Preauthorization is not required.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

RELATED PROTOCOLS

Transcatheter Aortic Valve Implantation for Aortic Stenosis

Transcatheter Pulmonary Valve Implantation

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals: • With symptomatic primary or secondary mitral regurgitation and are at prohibitive risk for open surgery</td>
<td>Interventions of interest are: • Transcatheter mitral valve repair using MitraClip</td>
<td>Comparators of interest are: • Medical management</td>
<td>Relevant outcomes include: • Overall survival • Morbid events • Functional outcomes • Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals: • With heart failure and moderate-to-severe or severe symptomatic secondary mitral regurgitation despite the use of maximally tolerated guideline-directed medical therapy</td>
<td>Interventions of interest are: • Transcatheter mitral valve repair using MitraClip</td>
<td>Comparators of interest are: • Medical management</td>
<td>Relevant outcomes include: • Overall survival • Morbid events • Functional outcomes • Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals: • With symptomatic primary or secondary mitral regurgitation and are surgical candidates</td>
<td>Interventions of interest are: • Transcatheter mitral valve repair using MitraClip</td>
<td>Comparators of interest are: • Open mitral valve repair • Open mitral valve replacement</td>
<td>Relevant outcomes include: • Overall survival • Morbid events • Functional outcomes • Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals: • With symptomatic primary or secondary mitral regurgitation</td>
<td>Interventions of interest are: • Transcatheter mitral valve repair using devices other than MitraClip</td>
<td>Comparators of interest are: • Open mitral valve repair • Open mitral valve replacement</td>
<td>Relevant outcomes include: • Overall survival • Morbid events • Functional outcomes • Treatment-related morbidity</td>
</tr>
</tbody>
</table>
DESCRIPTION

Transcatheter mitral valve repair (TMVR) is an alternative to surgical therapy for mitral regurgitation (MR). MR is a common valvular heart disease that can result from a primary structural abnormality of the mitral valve (MV) complex or a secondary dilatation of an anatomically normal MV due to a dilated left ventricle caused by ischemic or dilated cardiomyopathy. Surgical therapy may be underutilized, particularly in patients with multiple comorbidities, suggesting that there is an unmet need for less invasive procedures for MV repair. One device, MitraClip, has approval from the U.S. Food and Drug Administration for the treatment of severe symptomatic MR due to a primary abnormality of the MV (primary MR) in patients considered at prohibitive risk for surgery and for patients with heart failure and moderate-to-severe or severe symptomatic secondary MR despite the use of maximally tolerated guideline-directed medical therapy.

SUMMARY OF EVIDENCE

For individuals who have symptomatic primary MR and are at prohibitive risk for open surgery who receive TMVR using MitraClip, the evidence includes a single-arm prospective cohort with historical cohort and registry studies. Relevant outcomes are overall survival (OS), morbid events, functional outcomes, and treatment-related morbidity. The primary evidence includes the pivotal EVEREST II HRR and EVEREST II REALISM studies and Transcatheter Valve Therapy Registry studies. These studies have demonstrated that MitraClip implantation is feasible with a procedural success rate greater than 90%, 30-day mortality ranging from 2.3% to 6.4% (less than predicted Society of Thoracic Surgeons mortality risk score for MR repair or replacement; range, 9.5% to 13.2%), postimplantation MR severity grade of 2+ or less in 82% to 93% of patients, and a clinically meaningful gain in quality of life (5- to 6-point gains in 36-Item Short-Form Health Survey scores). At 1 year, freedom from death and MR more than 2+ was achieved in 61% of patients, but the 1-year mortality or heart failure hospitalization rates remain considerably high (38%). Conclusions related to the treatment effect on mortality based on historical controls cannot be made because the control groups did not provide unbiased or precise estimates of the natural history of patients eligible to receive MitraClip. Given that primary MR is a mechanical problem and there is no effective medical therapy, a randomized controlled trial (RCT) comparing MitraClip with medical management is not feasible or ethical. The postmarketing data from the U.S. is supportive that MitraClip surgery is being performed with short-term effectiveness and safety in a select patient population. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have heart failure and symptomatic secondary MR despite the use of maximally tolerated guideline-directed medical therapy who receive TMVR using MitraClip, the evidence includes a systematic review, 2 RCTs, and multiple observational studies. Relevant outcomes are OS, morbid events, functional outcomes, and treatment-related morbidity. The trials had discrepant results potentially related to differences in primary outcomes. The larger trial, with patients selected for nonresponse to maximally tolerated therapy, found a significant benefit for MitraClip after 2 years compared to medical therapy alone. Improvements in MR severity, quality of life measures, and functional capacity persisted to 36 months in patients who received TMVR. The systematic review confirmed the benefit of MitraClip found in the larger RCT but had important methodological limitations. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have symptomatic primary or secondary MR and are surgical candidates who receive TMVR using MitraClip, the evidence includes a systematic review, 1 RCT, and a retrospective comparative observational study in individuals aged ≥75 years. Relevant outcomes are OS, morbid events, functional outcomes, and treatment-related morbidity. The RCT found that MitraClip did not reduce MR as often or as completely as the surgical control, although it could be safely implanted and was associated with fewer adverse events at 1 year. Long-term follow-up from the RCT showed that significantly more MitraClip patients required surgery for MV dysfunction than conventional surgery patients. For these reasons, this single trial is not definitive in demon-
stratifying improved clinical outcomes with MitraClip compared with surgery. Additional RCTs are needed to corroborate these results. The observational study in individuals aged ≥75 years found that although MitraClip was associated with improved 1-year survival and a lower rate of all acute complications compared with surgical repair, it had lower 5-year survival and greater MR recurrence. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have symptomatic primary or secondary MR who receive TMVR using devices other than MitraClip, the evidence includes an RCT, nonrandomized prospective studies, and noncomparative feasibility studies. Relevant outcomes are OS, morbid events, functional outcomes, and treatment-related morbidity. A head-to-head RCT comparing the direct leaflet repair devices, PASCAL and MitraClip, is ongoing. Prospective nonrandomized trials demonstrate promising efficacy and safety results for the PASCAL direct leaflet repair device. A small open-label head-to-head comparison trial between PASCAL and MitraClip (Gercek et al 2021) demonstrated similar safety and efficacy between the 2 systems. Data from the ongoing RCT is needed to draw conclusions about the net health benefit. The randomized, sham-controlled trial for the indirect annuloplasty device Carillon® also offers promising safety data, however further studies are needed to determine efficacy and long-term outcomes. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

POLICY

Transcatheter mitral valve repair with a device approved by the U.S. Food and Drug Administration for use in mitral valve repair may be considered medically necessary for patients with symptomatic, primary mitral regurgitation who are considered at prohibitive risk for open surgery (see Policy Guidelines).

Transcatheter mitral valve repair with a device approved by the U.S. Food and Drug Administration may be considered medically necessary for patients with heart failure and moderate-to-severe or severe symptomatic secondary mitral regurgitation despite the use of maximally tolerated guideline-directed medical therapy (see Policy Guidelines section).

Transcatheter mitral valve repair is considered investigational in all other situations.

POLICY GUIDELINES

“Prohibitive risk” for open surgery may be determined based on:

- Presence of a Society for Thoracic Surgeons predicted mortality risk of 12% or greater and/or
- Presence of a logistic EuroSCORE of 20% or greater.

Moderate to severe or severe MR may be determined by:

- Grade 3+ (moderate) or 4+ (severe) MR confirmed by echocardiography
- New York Heart Association (NYHA) functional class II, III, or IVa (ambulatory) despite the use of stable maximal doses of guideline-directed medical therapy and cardiac resynchronization therapy (if appropriate) administered in accordance with guidelines of professional societies.

Optimal medical therapy may be determined by guidelines from specialty societies (e.g., American Heart Association/American College of Cardiology Guideline for the Management of Patients with Valvular Heart Disease, European Society of Cardiology/European Association for Cardio-Thoracic Surgery Guidelines for the Management of Valvular Heart Disease, American Heart Association/American College of Cardiology/Heart Failure Society of America Guideline for the Management of Heart Failure).
MEDICARE ADVANTAGE

For Medicare Advantage Transcatheter Edge-to-Edge Repair (TEER) of the mitral valve may be considered medically necessary under Coverage with Evidence Development (CED), for indications listed in National Coverage Determination (NCD) Transcatheter Edge-to-Edge Repair (TEER) for Mitral Valve Regurgitation (20.33).

TMVR is considered not medically necessary for the treatment of MR when not furnished under CED according to the above-noted criteria.

TMVR used for the treatment of any non-MR indications are considered not medically necessary.

TMVR may be eligible for uses that are not expressly listed as an FDA-approved indication when performed within an eligible clinical trial.

BACKGROUND

MITRAL REGURGITATION

Epidemiology and Classification

Mitral regurgitation (MR) is the second most common valvular heart disease, occurring in 7% of people older than age 75 years and accounting for 24% of all patients with valvular heart disease.1,2 MR with accompanying valvular incompetence leads to left ventricular (LV) volume overload with secondary ventricular remodeling, myocardial dysfunction, and left heart failure. Clinical signs and symptoms of dyspnea and orthopnea may also be present in patients with valvular dysfunction.3 MR severity is classified as mild, moderate, or severe disease on the basis of echocardiographic and/or angiographic findings (1+, 2+, and 3+ to 4+ angiographic grade, respectively).

Patients with MR generally fall into 2 categories: primary (also called degenerative) and secondary (also called functional) MR. Primary MR results from a primary structural abnormality in the valve, which causes it to leak. This leak may result from a floppy leaflet (called prolapse) or a ruptured cord that caused the leaflet to detach partially (called flail).4 Because the primary cause is a structural abnormality, most cases of primary MR are surgically corrected. Secondary MR results from LV dilatation due to ischemic or dilated cardiomyopathy. This causes the mitral valve (MV) leaflets not to coapt or meet in the center.3 Because the valves are structurally normal in secondary MR, correcting the dilated LV using medical therapy is the primary treatment strategy used in the U.S.

STANDARD MANAGEMENT

Surgical Management

In symptomatic patients with primary MR, surgery is the main therapy. In most cases, MV repair is preferred over replacement, as long as the valve is suitable for repair and personnel with appropriate surgical expertise are available. The American College of Cardiology and the American Heart Association have issued joint guidelines on the surgical management of MV.5

The use of standard open MV repair is limited by the requirement for thoracotomy and cardiopulmonary bypass, which may not be tolerated by elderly or debilitated patients due to their underlying cardiac disease or other conditions. In a single-center evaluation of 5737 patients with severe MR in the U.S., Goel et al (2014) found that 53% of patients did not have MV surgery performed, suggesting an unmet need for such patients.6

Isolated MV surgery (repair or replacement) for severe chronic secondary MR is not generally recommended because there is no proven mortality reduction and an uncertain durable effect on symptoms. Recommendations from major societies7,8 regarding MV surgery in conjunction with coronary artery bypass graft surgery or
surgical aortic valve replacement are weak because the current evidence is inconsistent on whether MV surgery produces a clinical benefit.9,10,11,12

Transcatheter Mitral Valve Repair

Transcatheter approaches have been investigated to address the unmet need for less invasive MV repair, particularly among inoperable patients who face prohibitively high surgical risks due to age or comorbidities. MV repair devices under development address various components of the MV complex and generally are performed on the beating heart without the need for cardiopulmonary bypass.1,13 Approaches to MV repair include direct leaflet repair,14 repair of the mitral annulus via direct annuloplasty, or indirect repair based on the annulus’s proximity to the coronary sinus. There are also devices in development to counteract ventricular remodeling, and systems designed for complete MV replacement via catheter.

Direct Leaflet Approximation

One device that undertakes direct leaflet repair, the MitraClip Clip Delivery System (Abbott Vascular), has been approved through the premarket approval process by the U.S. Food and Drug Administration (FDA) for use in certain patients with symptomatic primary MR (see Regulatory Status section). Of the transcatheter MV repair devices under investigation, MitraClip has the largest body of evidence evaluating its use; it has been in use in Europe since 2008.14 The MitraClip system is deployed percutaneously and approximates the open Alfieri edge-to-edge repair approach to treating MR. The delivery system consists of a catheter, a steerable sleeve, and the MitraClip device, which is a 4-mm wide clip fabricated from a cobalt-chromium alloy and polypropylene fabric. MitraClip is deployed via a transfemoral approach, with transseptal puncture used to access the left side of the heart and the MV. Placement of MitraClip leads to coapting of the mitral leaflets, thus creating a double-orifice valve.

The PASCAL (PAddles Spacer Clasps ALfieri) Mitral Repair System (Edwards Lifesciences) is also a direct coaptation device and works in a similar manner to the MitraClip system.15 The delivery system consists of a 10-mm central spacer that attaches to the MV leaflets by 2 paddles and clasps (CE marked, which is a status of approval awarded by a quality organization in the European Union). Pivotal trials are ongoing in the U.S.

Other Mitral Valve Repair Devices

Devices for transcatheter mitral valve repair (TMVR) that use different approaches are in development. Techniques to repair the mitral annulus include those that target the annulus itself (direct annuloplasty) and those that tighten the mitral annulus via manipulation of the adjacent coronary sinus (indirect annuloplasty). Indirect annuloplasty devices include the Carillon Mitral Contour System (Cardiac Dimension) and the Monarc device (Edwards Lifesciences). The CE-marked Carillon Mitral Contour System is comprised of self-expanding proximal and distal anchors connected with a nitinol bridge, with the proximal end coronary sinus ostium and the distal anchor in the great cardiac vein. The size of the connection is controlled by a manual pull back on the catheter. The Carillon system was evaluated in the Carillon Mitral Annuloplasty Device European Union Study and the follow-up Tighten the Annulus Now study, with further studies planned.16 The Monarc system also involves 2 self-expanding stents connected by a nitinol bridge, with one end implanted in the coronary sinus via the internal jugular vein and the other in the great cardiac vein. Several weeks after implantation, the biologically degradable coating over the nitinol bridge degrades, allowing the bridge to shrink and the system to shorten. It has been evaluated in the Clinical Evaluation of the Edwards Lifesciences Percutaneous Mitral Annuloplasty System for the Treatment of Mitral Regurgitation trial.17

Direct annuloplasty devices include the Mitralign Percutaneous Annuloplasty System (Mitralign) and the AccuCinch® System (Guided Delivery Systems), both of which involve transcatheter placement of anchors in the MV; they are cinched or connected to narrow the mitral annulus. Other transcatheter direct annuloplasty devices under investigation include the enCorTC™ device (MiCardia), which involves a percutaneously insertable annuloplasty ring that is adjustable using radiofrequency energy, a variation on its CE-marked enCorSQ Mitral
Valve Repair System, and the Cardioband Annuloplasty System (Valtech Cardio), an implantable annuloplasty band with a transfemoral venous delivery system.

TRANSCATHETER MITRAL VALVE REPLACEMENT

PermaValve (Micro Interventional Devices), under investigation in the U.S., is a transcatheater MV replacement device that is delivered via the transapical approach. On June 5, 2017, the SAPIEN 3 Transcatheter Heart Valve (Edwards Lifesciences) was approved by the FDA as an MV replacement device. These replacement valves are outside the scope of this evidence review.

MEDICAL MANAGEMENT

The standard treatment for patients with chronic secondary MR is medical management. Patients with chronic secondary MR should receive standard therapy for heart failure with reduced ejection fraction; standard management includes angiotensin-converting enzyme inhibitor (or angiotensin II receptor blocker or angiotensin receptor-neprilysin inhibitor), beta-blocker and mineralocorticoid receptor antagonist, and diuretic therapy as needed to treat volume overload.4,3 Resynchronization therapy may provide symptomatic relief, improve LV function, and in some patients, lessen the severity of MR.

REGULATORY STATUS

In October 2013, the MitraClip Clip Delivery System (Abbott Vascular) was approved by the FDA through the premarket approval process for treatment of “significant symptomatic mitral regurgitation (MR ≥3+) due to primary abnormality of the mitral apparatus (degenerative MR) in patients who have been determined to be at a prohibitive risk for mitral valve surgery by a heart team.”18 FDA product code: NKM.

In March 2019, the FDA approved a new indication for MitraClip, for “treatment of patients with normal mitral valves who develop heart failure symptoms and moderate-to-severe or severe mitral regurgitation because of diminished left heart function (commonly known as secondary or functional mitral regurgitation) despite being treated with optimal medical therapy. Optimal medical therapy includes combinations of different heart failure medications along with, in certain patients, cardiac resynchronization therapy and implantation of cardioverter defibrillators.”

Services that are the subject of a clinical trial do not meet our Technology Assessment and Medically Necessary Services Protocol criteria and are considered investigational. \textit{For explanation of experimental and investigational, please refer to the Technology Assessment and Medically Necessary Services Protocol.}

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. \textit{Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.}

REFERENCES

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

