This protocol considers this test or procedure investigational. If the physician feels this service is medically necessary, preauthorization is recommended.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

Populations

<table>
<thead>
<tr>
<th>Individuals:</th>
<th>Interventions of interest are:</th>
<th>Comparators of interest are:</th>
<th>Relevant outcomes include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>With acute cardiac ischemia</td>
<td>Progenitor cell therapy</td>
<td>Standard therapy</td>
<td>Disease-specific survival, Morbid events, Functional outcomes, Quality of life, Hospitalizations</td>
</tr>
<tr>
<td>With chronic cardiac ischemia</td>
<td>Progenitor cell therapy</td>
<td>Standard therapy</td>
<td>Disease-specific survival, Morbid events, Functional outcomes, Quality of life, Hospitalizations</td>
</tr>
<tr>
<td>With refractory angina</td>
<td>Progenitor cell therapy</td>
<td>Standard therapy</td>
<td>Disease-specific survival, Morbid events, Functional outcomes, Quality of life, Hospitalizations</td>
</tr>
</tbody>
</table>

DESCRIPTION

Progenitor cell therapy describes the use of multipotent cells of various cell lineages (autologous or allogeneic) for tissue repair and/or regeneration. Progenitor cell therapy is being investigated for the treatment of damaged myocardium resulting from acute or chronic cardiac ischemia and for refractory angina.

SUMMARY OF EVIDENCE

For individuals who have acute cardiac ischemia who receive progenitor cell therapy, the evidence includes two phase 3 randomized controlled trials (RCTs), numerous small, early-phase RCTs, and meta-analyses of these RCTs. Relevant outcomes are disease-specific survival, morbid events, functional outcomes, quality of life, and hospitalizations. Limited evidence on clinical outcomes has suggested that there may be benefits from improv-
ing left ventricular ejection fraction, reducing recurrent myocardial infarction, decreasing the need for further revascularization, and perhaps decreasing mortality, although a recent, large, individual patient data meta-
analysis reported no improvement in these outcomes. No adequately powered trial has reported benefits in clinical outcomes (e.g., mortality, adverse cardiac outcomes, exercise capacity, quality of life). Overall, this evi-
dence has suggested that progenitor cell treatment may be a promising intervention, but robust data on clinical outcomes are lacking. High-quality RCTs, powered to detect differences in clinical outcomes, are needed to answer this question. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have chronic cardiac ischemia who receive progenitor cell therapy, the evidence includes two phase 3 RCTs with more than 100 participants, systematic reviews of smaller, early-phase RCTs, and a non-
randomized comparative trial. Relevant outcomes are disease-specific survival, morbid events, functional outcomes, quality of life, and hospitalizations. The studies included in the meta-analyses have reported only on a small number of clinical outcome events. These findings from early phase 2 trials need to be corroborated in larger phase 3 trials. A well-conducted, phase 3 RCT trial failed to demonstrate superiority of cell therapy for its primary composite outcome that included death, worsening heart failure events, and other multiple events. The nonrandomized STAR-Heart trial showed a mortality benefit as well as favorable hemodynamic effect, but a lack of randomization limits interpretation due to the concern about selection bias and differences in known and un-
known prognostic variables at baseline between both arms. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have refractory angina who receive progenitor cell therapy, the evidence includes a system-
atric review of RCTs, phase 2 trials, and a phase 3 pivotal trial. Relevant outcomes are disease-specific survival, morbid events, functional outcomes, quality of life, and hospitalizations. The only phase 3 trial identified was terminated early and insufficiently powered to evaluate clinical outcomes. Additional larger trials are needed to determine whether progenitor cell therapy improves health outcomes in patients with refractory angina. The evidence is insufficient to determine the effects of the technology on health outcomes.

POLICY

Progenitor cell therapy, including but not limited to skeletal myoblasts or hematopoietic cells, is considered investigational as a treatment of damaged myocardium.

Infusion of growth factors (i.e., granulocyte colony stimulating factor) is considered investigational as a tech-
nique to increase the numbers of circulating hematopoietic cells as treatment of damaged myocardium.

POLICY GUIDELINES

In some situations, the implantation may be an added component of a scheduled coronary artery bypass graft; in other situations, the implantation may be performed as a unique indication for a cardiac catheterization pro-
cedure.

BACKGROUND

ISCHEMIA

Ischemia is the most common cause of cardiovascular disease and myocardial damage in the developed world. Despite impressive advances in treatment, ischemic heart disease is still associated with high morbidity and mortality.
Treatment

Current treatments for ischemic heart disease seek to revascularize occluded arteries, optimize pump function, and prevent future myocardial damage. However, current treatments do not reverse existing heart muscle damage.1,2 Treatment with progenitor cells (i.e., stem cells) offers potential benefits beyond those of standard medical care, including the potential for repair and/or regeneration of damaged myocardium. Potential sources of embryonic and adult donor cells include skeletal myoblasts, bone marrow cells, circulating blood-derived progenitor cells, endometrial mesenchymal stem cells, adult testis pluripotent stem cells, mesothelial cells, adipose-derived stromal cells, embryonic cells, induced pluripotent stem cells, and bone marrow mesenchymal stem cells, all of which can differentiate into cardiomyocytes and vascular endothelial cells.

The mechanism of benefit after treatment with progenitor cells is not entirely understood. Differentiation of progenitor cells into mature myocytes and engraftment of progenitor cells into areas of the damaged myocardium has been suggested in animal studies using tagged progenitor cells. However, there is controversy concerning whether injected progenitor cells engraft and differentiate into mature myocytes in humans to the degree that might result in clinical benefit. It also has been proposed that progenitor cells may improve perfusion to areas of ischemic myocardium. Basic science research has also suggested that injected stem cells secrete cytokines with antiapoptotic and proangiogenesis properties. Clinical benefit may result if these paracrine factors limit cell death from ischemia or stimulate recovery. For example, myocardial protection can occur through modulation of inflammatory and fibrogenic processes. Alternatively, paracrine factors may affect intrinsic repair mechanisms of the heart through neovascularization, cardiac metabolism, and contractility, increase in cardiomyocyte proliferation, or activation of resident stem and progenitor cells. The relative importance of these proposed paracrine actions depends on the age of the infarct (e.g., cytoprotective effects in acute ischemia and cell proliferation in chronic ischemia). Investigation of the specific factors induced by administration of progenitor cells is ongoing.

There are also various potential delivery mechanisms for donor cells, encompassing a wide range of invasiveness. Donor cells can be delivered via thoracotomy and direct injection into areas of damaged myocardium. Injection of progenitor cells into the coronary circulation also is done using percutaneous, catheter-based techniques. Finally, progenitor cells may be delivered intravenously via a peripheral vein. With this approach, the cells must be able to target damaged myocardium and concentrate at the site of myocardial damage.

Adverse events of progenitor cell treatment include risks of the delivery procedure (e.g., thoracotomy, percutaneous catheter-based) and risks of the donor cells themselves. Donor progenitor cells can differentiate into fibroblasts rather than myocytes. This may create a substrate for malignant ventricular arrhythmias. There also is a theoretical risk that tumors (e.g., teratomas) can arise from progenitor cells, but the actual risk in humans is currently unknown.

REGULATORY STATUS

The U.S. Food and Drug Administration (FDA) regulates human cells and tissues intended for implantation, transplantation, or infusion through the Center for Biologics Evaluation and Research, under Code of Federal Regulation title 21, parts 1270 and 1271. Progenitor cells are included in these regulations. FDA marketing clearance is not required when autologous cells are processed on site with existing laboratory procedures and injected with existing catheter devices. Several cell products are expanded ex vivo and require FDA approval. The 21st Century Cures Act (December 2016) established new expedited product development programs including one for regenerative medicine advanced therapy (RMAT).3 The RMAT designation may be given if: (1) the drug is a regenerative medicine therapy (i.e., a cell therapy), therapeutic tissue engineering product, human cell and tissue product, or any combination product; (2) the drug is intended to treat, modify, reverse, or cure a serious or life-
threatening disease or condition; and (3) preliminary clinical evidence indicates that the drug has the potential to address unmet medical needs.

Multiple progenitor cell therapies such as MyoCell® (U.S. Stem Cell, formerly Bioheart), ixmyelocel-T (Vericel, formerly Aastrom Biosciences), MultiStem® (Athersys), and CardiAMPTM (BioCardia) are being commercially developed, but none has been approved by the FDA so far.

MyoCell® comprises patient autologous skeletal myoblasts that are expanded ex vivo and supplied as a cell suspension in a buffered salt solution for injection into the area of damaged myocardium. In 2017, U.S. Stem Cell reprioritized its efforts away from seeking RMAT designation for MyoCell®.

Ixmyelocel-T is an expanded multicellular therapeutic product produced from a patient’s bone marrow by selectively expanding bone marrow mononuclear cells for two weeks. The expanded cell product enriched for mesenchymal and macrophage lineages might enhance potency. Vericel has received RMAT designation for Ixmyelocel-T.

MultiStem® is an allogeneic bone marrow–derived adherent adult stem cell product.

CardiAMPTM Cell Therapy system consists of a proprietary assay to identify patients with a high probability to respond to autologous cell therapy, a proprietary cell processing system to isolate process and concentrate the stem cells from a bone marrow harvest at the point of care, and a proprietary delivery system to percutaneously inject the autologous cells into the myocardium. BioCardia has received an investigational device exemption from FDA to perform a trial of CardiAMPTM.

RELATED PROTOCOLS

Orthopedic Applications of Stem Cell Therapy (Including Allografts and Bone Substitutes Used With Autologous Bone Marrow)

Stem Cell Therapy for Peripheral Arterial Disease

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

REFERENCES

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.