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 Genetic Testing for Developmental Delay and Autism 
Spectrum Disorder 

 (20459, 20483, 20481) 

Medical Benefit Effective Date:  01/01/19 Next Review Date:  09/20 
Preauthorization Yes Review Dates:  09/10, 09/11, 03/12, 03/13, 03/14, 11/14, 11/15, 09/16, 05/17, 

09/17, 09/18, 09/19 

Preauthorization is required. 

The following protocol contains medical necessity criteria that apply for this service. The criteria 
are also applicable to services provided in the local Medicare Advantage operating area for those 
members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, 
reimbursement will be denied and the patient cannot be billed. Please note that payment for 
covered services is subject to eligibility and the limitations noted in the patient’s contract at the 
time the services are rendered. 
 

Populations Interventions Comparators Outcomes 
Individuals: 
• With developmental delay/ 

intellectual disability, 
autism, or congenital 
anomalies not specific to a 
genetic syndrome 

Interventions of interest 
are: 
• Chromosomal 

microarray testing 

Comparators of interest 
are: 
• Karyotyping 

Relevant outcomes include: 
• Test validity 
• Changes in reproductive 

decision-making 
• Morbid events 
• Resource utilization 

Individuals: 
• With developmental delay/ 

intellectual disability, 
autism, or multiple 
congenital anomalies non- 
specific to a genetic 
syndrome 

Interventions of interest 
are: 
• Next-generation 

sequencing panel 
testing 

Comparators of interest 
are: 
• Chromosomal 

microarray testing  

Relevant outcomes include: 
• Test validity 
• Changes in reproductive 

decision-making 
• Morbid events 
• Resource utilization 

Individuals:  
• With characteristics of 

fragile X syndrome or a 
fragile X–associated 
disorder 

Interventions of interest 
are: 
• FMR1 variant testing 

Comparators of interest 
are: 
• Standard clinical 

evaluation without 
genetic testing 

Relevant outcomes include: 
• Test accuracy 
• Test validity 
• Resource utilization 

Individuals:  
• Who have a personal or 

family history of fragile X 
syndrome who are seeking 
reproductive counseling 

Interventions of interest 
are: 
• FMR1 variant testing 

Comparators of interest 
are: 
• Standard clinical 

evaluation without 
genetic testing 

Relevant outcomes include: 
• Test accuracy 
• Test validity 
• Changes in reproductive 

decision-making 
Individuals: 
• With signs and/or symptoms 

of Rett syndrome 

Interventions of interest 
are: 
• Genetic testing for 

Rett syndrome-
associated genes 

Comparators of interest 
are: 
• Standard clinical 

management without 
genetic testing 

Relevant outcomes include: 
• Test accuracy 
• Test validity 
• Other test performance 

measures 
• Symptoms 
• Health status measures 
• Quality of life 

Individuals: 
• Who are asymptomatic 

Interventions of interest 
are: 

Comparators of interest 
are: 

Relevant outcomes include: 
• Test accuracy 

Protocol
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Populations Interventions Comparators Outcomes 
sisters of an individual with 
Rett syndrome 

• Targeted genetic
testing for a known
familial Rett
Syndrome-associated
variant

• Standard clinical
management without
genetic testing

• Test validity
• Other test performance

measures
• Changes in reproductive

decision-making
• Symptoms

Individuals: 
• Who are females with a

child with Rett syndrome
who are considering further
childbearing

Interventions of interest 
are: 
• Targeted genetic

testing for a known
familial Rett
Syndrome-associated
variant

Comparators of interest 
are: 
• Reproductive planning

without genetic testing

Relevant outcomes include: 
• Test accuracy
• Test validity
• Other test performance

measures
• Changes in reproductive

decision-making

DESCRIPTION 

Chromosomal microarray (CMA) testing has been proposed for detection of genetic imbalances in infants or 
children with characteristics of developmental delay/intellectual disability (DD/ID), autism spectrum disorder 
(ASD), and/or congenital anomalies. CMA testing increases the diagnostic yield over karyotyping in children with 
the aforementioned characteristics, and CMA testing may impact clinical management decisions. Next-genera-
tion sequencing panel testing allows for simultaneous analysis of a large number of genes and, in patients with 
normal CMA testing, the next-generation testing has been proposed as a way to identify single-gene causes of 
syndromes that have autism as a significant clinical feature. 

Fragile X syndrome (FXS) is the most common inherited form of mental disability and known genetic cause of 
autism. The diagnosis is made with a genetic test that determines the number of CGG repeats in the fragile X 
gene, FMR1. FMR1 variant testing has been investigated in a variety of clinical settings, including in the evalua-
tion of individuals with a personal or family history of intellectual disability, developmental delay, or autism 
spectrum disorder and in reproductive decision-making in individuals with known FMR1 variants or positive 
cytogenetic fragile X testing. FMR1 variants also cause premature ovarian failure and a neurologic disease called 
fragile X-associated ataxia or tremor syndrome. 

Rett syndrome (RTT), a neurodevelopmental disorder, is usually caused by pathogenic variants in the methyl-
CpG-binding protein 2 (MECP2) gene. Genetic testing is available to determine whether a pathogenic variant 
exists in RTT-associated genes (e.g., MECP2, FOXG1, or CDLK5) in a patient with clinical features of RTT or a 
patient’s family member. 

SUMMARY OF EVIDENCE 

For individuals who have DD/ID, ASD, or multiple congenital anomalies not specific to a well-delineated genetic 
syndrome who receive CMA testing, the evidence includes primarily case series. Relevant outcomes are test 
validity, changes in reproductive decision-making, morbid events, and resource utilization. The available evi-
dence supports test validity. Although systematic studies of the impact of CMA on patient outcomes are lacking, 
the improvement in diagnostic yield over karyotyping has been well-demonstrated. Direct evidence of improved 
outcomes with CMA compared with karyotyping is lacking. However, for at least a subset of the disorders poten-
tially diagnosed with CMA testing in this patient population, there are well-defined and accepted management 
steps associated with positive test results. Further, there is evidence of changes in reproductive decision-making 
as a result of positive test results. The information derived from CMA testing can accomplish the following: it 
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could end a long diagnostic odyssey; or reduce morbidity for certain conditions by initiating surveillance/ 
management of associated comorbidities; or it could impact future reproductive decision-making for parents. 
The evidence is sufficient to determine that the technology results in a meaningful improvement in the net 
health outcome. 

For individuals who have DD/ID, ASD, or multiple congenital anomalies not specific to a well-delineated genetic 
syndrome who receive next-generation sequencing panel testing, the evidence includes primarily case series. 
Relevant outcomes are test validity, changes in reproductive decision-making, morbid events, and resource utili-
zation. The diagnostic yield associated with next-generation sequencing panel testing in this patient population 
is not well characterized. The testing yield and likelihood of an uncertain result are variable, based on the gene 
panel, gene tested, and patient population; additionally, there are risks of uninterpretable and incidental results. 
The evidence is insufficient to determine the effects of the technology on health outcomes. 

For individuals who have characteristics of FXS or an FXS-associated disorder, the evidence includes studies 
evaluating the clinical validity of FMR1 variant testing. Relevant outcomes are test accuracy, test validity, and 
resource utilization. The evidence demonstrates that FMR1 variant testing can establish a definitive diagnosis of 
FXS and fragile X-related syndromes when the test is positive for a pathogenic variant. Following a definitive 
diagnosis, treatment of comorbid conditions may be improved. At a minimum, providing a diagnosis eliminates 
the need for further diagnostic workup. A chain of evidence supports improved outcomes following FMR1 vari-
ant testing. The evidence is sufficient to determine that the technology results in a meaningful improvement in 
the net health outcome. 

For individuals who have a personal or family history of FXS who are seeking reproductive counseling, the evi-
dence includes studies evaluating the clinical validity of FMR1 variant testing and the effect on reproductive 
decisions. Relevant outcomes are test accuracy, test validity, and changes in reproductive decision-making. Test-
ing the repeat region of the FMR1 gene in the context of reproductive decision-making may include individuals 
with either a family history of FXS or a family history of undiagnosed intellectual disability, fetuses of known 
carrier mothers, or affected individuals or their relatives who have had a positive cytogenetic fragile X test result 
who are seeking further counseling related to the risk of carrier status among themselves or their relatives. DNA 
testing would accurately identify pre-mutation carriers and distinguish pre-mutation from full mutation carrier 
women. The evidence is sufficient to determine that the technology results in a meaningful improvement in the 
net health outcome. 

For individuals who have signs and/or symptoms of RTT who receive genetic testing for RTT-associated genes, 
the evidence includes case series and prospective cohort studies. Relevant outcomes are test accuracy and 
validity, other test performance measures, symptoms, health status measures, and quality of life. MECP2 vari-
ants are found in most patients with RTT, particularly in those who present with classic clinical features of RTT. 
The diagnostic accuracy of genetic testing for RTT cannot be determined with absolute certainty given variable 
clinical presentations of typical vs. atypical RTT, but testing appears to have high sensitivity and specificity. 
Genetic testing has clinical utility when signs and symptoms of RTT are present to establish a specific genetic 
diagnosis. Identification of a specific class or type of pathogenic variant may alter some aspects of management 
and may eliminate or necessitate surveillance for different clinical manifestations of the disease. The evidence is 
sufficient to determine that the technology results in a meaningful improvement in the net health outcome. 

For individuals who are asymptomatic sisters of an individual with RTT who receive targeted genetic testing for a 
known familial RTT-associated variant, the evidence includes case series and prospective cohort studies. Rele-
vant outcomes are test accuracy and validity, other test performance measures, changes in reproductive deci-
sion-making, symptoms, and symptoms. Targeted familial variant testing of asymptomatic sisters can eliminate 
or necessitate surveillance given the variability of clinical presentation in girls due to X-chromosome inactivation 
and clinical severity based on the type of pathogenic variant present. In sisters of reproductive age, determina-



Protocol Genetic Testing for Developmental Delay and Autism Spectrum 
Disorder 

Last Review Date:  09/19 

 

 Page 4 of 23 

tion of carrier status can eliminate or necessitate prenatal testing and inform reproductive decision-making. The 
evidence is sufficient to determine that the technology results in a meaningful improvement in the net health 
outcome. 

For individuals who are females with a child with RTT who are considering future childbearing who receive tar-
geted genetic testing for a known familial RTT-associated variant, the evidence includes cases series and pro-
spective cohort studies. Relevant outcomes are test accuracy and validity, other test performance measures, 
and changes in reproductive decision-making. Targeted familial variant testing of a woman with a child with RTT 
to determine carrier status may inform prenatal testing and reproductive decision-making. In the rare situation 
where the mother carries a pathogenic variant, all future offspring have a 50% of being affected, with males 
typically presenting with more severe disease. The evidence is sufficient to determine that the technology 
results in a meaningful improvement in the net health outcome. 
 

POLICY 

DEVELOPMENTAL DELAY/INTELLECTUAL DISORDER AND AUTISM SPECTRUM DISORDER 

Chromosomal microarray testing may be considered medically necessary as first-line evaluation when genetic 
evaluation is desired as opposed to first obtaining a karyotype. 

Genetic Testing for Evaluation of Developmental Delay/Intellectual Disorder/Autism Spectrum Disorder (DD/ID/ 
ASD) by chromosomal microarray analysis may be considered medically necessary in the postnatal period fol-
lowing complete clinical and biochemical evaluation (when these evaluations are non-diagnostic) under the fol-
lowing conditions: 

If clinically indicated, the individual has had FMR1 gene analysis (for Fragile X), and that testing is negative 

AND one of the following is true: 

The individual has a diagnosis of autism spectrum disorder; OR  

The individual has a diagnosis of apparent non-syndromic developmental delay/intellectual disability; OR 

The individual has multiple congenital anomalies not specific to a well-delineated genetic syndrome, including: 

• Two or more major malformations; OR 

• A single major malformation or multiple minor malformations, in an infant or child who is also small-for-
dates; OR 

• A single major malformation and multiple minor malformations;  

AND the results for the genetic testing have the potential to impact the clinical management of the member. 

RETT SYNDROME 

Genetic testing for Rett syndrome-associated genes (e.g., MECP2, FOXG1, or CDKL5) may be considered medi-
cally necessary to establish a genetic diagnosis of Rett syndrome in a child with developmental delay and signs/ 
symptoms of Rett syndrome, when a definitive diagnosis cannot be made without genetic testing. 

Targeted genetic testing for a known familial Rett syndrome-associated variant may be considered medically 
necessary to determine carrier status of a mother or a sister of an individual with Rett syndrome. 

All other indications for genetic testing for Rett syndrome-associated genes (e.g., MECP2, FOXG1, or CDKL5), 
including carrier testing (preconception or prenatal), in persons with a negative family history and testing of 
asymptomatic family members to determine future risk of disease, are considered investigational. 
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FRAGILE X SYNDROME 

Genetic testing for FMR1 mutations may be considered medically necessary for the following patient popula-
tions: 

• Individuals with characteristics of fragile X syndrome or a fragile X-associated disorder, including: 

o Individuals with intellectual disability, developmental delay, or autism spectrum disorder; 

o Women with primary ovarian insufficiency under the age of 40 in whom fragile X-associated primary 
ovarian insufficiency is suspected; 

o Individuals with neurologic symptoms consistent with fragile X-associated tremor/ataxia syndrome. 

• Individuals who have a personal or family history of fragile X syndrome who are seeking reproductive coun-
seling, including: 

o Individuals who have a family history of fragile X syndrome or a family history of undiagnosed intellec-
tual disability; 

o Affected individuals or relatives of affected individuals who have had a positive cytogenetic fragile X test 
result who are seeking information on carrier status; 

o Prenatal testing of fetuses of known carrier mothers. 

Genetic testing for FMR1 mutations is considered investigational for all other uses. 

Chromosomal microarray analysis is considered investigational to confirm the diagnosis of a disorder or syn-
drome that is routinely diagnosed based on clinical evaluation alone. 

Broad gene panel testing using next-generation sequencing is considered investigational in all cases of sus-
pected genetic abnormality in children with DD/ID/ASD. 

 

POLICY GUIDELINES  

The genetic testing discussed in this protocol would be necessary only once in a lifetime. 

GENETIC COUNSELING 

Experts recommend formal genetic counseling for patients who are at risk for inherited disorders and who wish 
to undergo genetic testing. Interpreting the results of genetic tests and understanding risk factors can be diffi-
cult for some patients; genetic counseling helps individuals understand the impact of genetic testing, including 
the possible effects the test results could have on the individual or their family members. It should be noted that 
genetic counseling may alter the utilization of genetic testing substantially and may reduce inappropriate test-
ing; further, genetic counseling should be performed by an individual with experience and expertise in genetic 
medicine and genetic testing methods. 

DEVELOPMENTAL DELAY/INTELLECTUAL DISABILITY 

A guidelines update from American College of Medical Genetics (Schaefer et al, 2013) stated that a step-wise (or 
tiered) approach to the clinical genetic diagnostic evaluation of autism spectrum disorder is recommended, with 
the recommendation being for first tier to include fragile X syndrome and chromosomal microarray (CMA) test-
ing and if they are normal, then second tier to include MECP2 (Rett Syndrome) and PTEN (autism and other 
developmental abnormalities, including Cowden syndrome) testing. 

Recommendations from the American College of Medical Genetics guidelines (Manning and Hudgins [2010]) on 
array-based technologies and their clinical utilization for detecting chromosomal abnormalities include the fol-
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lowing: “Appropriate follow-up is recommended in cases of chromosome imbalance identified by CMA, to 
include cytogenetic/FISH studies of the patient, parental evaluation, and clinical genetic evaluation and coun-
seling.” 

In some cases of CMA analysis, the laboratory performing the test confirms all reported copy number variants 
with an alternative technology, such as fluorescent in situ hybridization analysis. 

FMR1 

American College of Medical Genetics Recommendations 

According to the American College of Medical Genetics (ACMG) Recommendations, the following is the pre-
ferred approach to testing (Sherman et al, 2005): 

• “DNA analysis is the method of choice if one is testing specifically for fragile X syndrome (FXS) and associ-
ated trinucleotide repeat expansion in the FMR1 gene.” 

• “For isolated cognitive impairment, DNA analysis for FXS should be performed as part of a comprehensive 
genetic evaluation that includes routine cytogenetic evaluation. Cytogenetic studies are critical, since consti-
tutional chromosome abnormalities have been identified as frequently or more frequently than fragile X 
mutations in mentally retarded individuals referred for fragile X testing.”  

• Fragile X testing is not routinely warranted for children with isolated attention-deficit/hyperactivity disorder 
(see Subcommittee on Attention-Deficit/Hyperactivity Disorder, Steering Committee on Quality Improve-
ment and Management, 2011). 

• “For individuals who are at risk due to an established family history of fragile X syndrome, DNA testing alone 
is sufficient. If the diagnosis of the affected relative was based on previous cytogenetic testing for fragile X 
syndrome, at least one affected relative should have DNA testing.” 

• “Prenatal testing of a fetus should be offered when the mother is a known carrier to determine whether the 
fetus inherited the normal or mutant FMR1 gene. Ideally DNA testing should be performed on cultured 
amniocytes obtained by amniocentesis after 15 weeks’ gestation. DNA testing can be performed on chori-
onic villi obtained by CVS at 10 to 12 weeks’ gestation, but the results must be interpreted with caution 
because the methylation status of the FMR1 gene is often not yet established in chorionic villi at the time of 
sampling. A follow-up amniocentesis may be necessary to resolve an ambiguous result.” 

• “If a woman has ovarian failure before the age of 40, DNA testing for pre-mutation size alleles should be 
considered as part of an infertility evaluation and prior to in vitro fertilization.” 

• “If a patient has cerebellar ataxia and intentional tremor, DNA testing for pre-mutation size alleles, 
especially among men, should be considered as part of the diagnostic evaluation.” 

ACMG made recommendations on diagnostic and carrier testing for FXS to provide general guidelines to aid cli-
nicians in making referrals for testing the repeat region of the FMR1 gene. These recommendations include 
testing of individuals of either sex who have intellectual disability, developmental delay, or autism spectrum dis-
order, especially if they have any physical or behavioral characteristics of FXS (see Sherman et al, 2005). 

Physical and behavioral characteristics of FXS include: typical facial features, such as an elongated face with 
prominent forehead, protruding jaw, and large ears. Connective tissue anomalies include hyperextensible finger 
and thumb joints, hand calluses, velvet-like skin, flat feet, and mitral valve prolapse. The characteristic appear-
ance of adult males includes macroorchidism. Patients may show behavioral problems including autism spec-
trum disorder, sleeping problems, social anxiety, poor eye contact, mood disorders, and hand-flapping or biting. 
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Another prominent feature of the disorder is neuronal hyperexcitability, manifested by hyperactivity, increased 
sensitivity to sensory stimuli, and a high incidence of epileptic seizures. 

TESTING STRATEGY 

Detection of CGG triplet repeats in the FMR1 gene can occur sequentially or in parallel with determination of 
methylation status: 

1. In sequential testing, detection of CGG triplet repeats in FMR1 is performed first. If a large number of 
repeats (e.g., >55) is detected, reflex methylation testing can be performed to determine methylation status 

2. In parallel testing, detection methods such as methylation-specific polymerase chain reaction allow for 
detection of both the size of CGG triplet repeats in FMR1 and methylation status. 

CYTOGENETIC TESTING 

Cytogenetic testing was used before the identification of the FMR1 gene and is significantly less accurate than 
the current DNA test. The method is no longer considered an acceptable diagnostic method according to ACMG 
standards (see Monaghan et al, 2013). 

 

MEDICARE ADVANTAGE  

For Medicare Advantage genetic testing for FMR1 and Rett Syndrome not meeting the criteria above will be con-
sidered not medically necessary. 

 

BACKGROUND 

DEVELOPMENTAL DELAY/INTELLECTUAL DISABILITY  

Developmental delay (DD) is diagnosed in children five years or younger who show a significant delay in two or 
more developmental domains: gross or fine motor, speech/language, cognitive, social/personal, and activities of 
daily living.1 DD can precede the development of intellectual disability (ID) as the child ages.2 

ID is manifest by significant limitations in intellectual functioning and adaptive behavior. It is diagnosed at or 
after age five (when intelligence testing is considered valid and reliable) but prior to age 18 and is lifelong. The 
Diagnostic and Statistical Manual of Mental Disorders: Fifth Edition (DSM-5) defines ID as occurring during the 
developmental period and involving impairments of general mental abilities (e.g., IQ <70 or 75) that impact 
adaptive functioning in the conceptual, social, and practical domains.3 

Prevalence estimates of DD and ID range from 1% to 3%.4 Both are influenced by genetic, environmental, infec-
tious, and perinatal factors. Approximately 450 genes have been causally related to ID; most genes (≈90%) are 
associated with syndromes.5 Inheritance of ID can be autosomal-dominant, recessive, or Xlinked; and most non-
syndromic genes are located on the X chromosome. Prior to the advent of whole exome and genome sequenc-
ing, Willemsen and Kleefstra (2014) concluded that 20% to 40% of ID cases could be attributed to a genetic vari-
ant.6 With the use of whole-genome sequencing, they estimated almost 60% of cases have an identifiable 
genetic etiology. 

Congenital anomalies are frequently present in children with DD and ID. In addition, a suspected etiology can 
often be established from history and physical examination (in skilled specialists as much as 20% to 40% of 
cases) without genetic testing.7 The recommended approach to evaluation in DD/ID begins with a three-genera-
tion family history and physical (including neurologic) exam. Subsequent testing is used to confirm a suspected 
diagnosis (e.g., targeted fluorescent in situ hybridization [FISH] testing for DiGeorge or cri-du-chat syndromes). If 
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no diagnosis is suspected, fragile X syndrome testing, metabolic testing for inborn errors of metabolism, and 
chromosomal microarray (CMA) testing (without karyotyping) are recommended—regardless of the presence or 
absence of dysmorphologic features or congenital anomalies.1 

AUTISM SPECTRUM DISORDER 

DSM-5 defines autism spectrum disorder (ASD)a as the presence of3: 

• Persistent deficits in social communication and social interaction across multiple contexts,  

• Restricted, repetitive patterns of behavior, interests, or activities, 

• Symptoms must be present in the early developmental period (typically recognized in the first two years of 
life), and 

• Symptoms cause clinically significant impairment in social, occupational, or other important areas of current 
functioning. 

In 2010, the estimated prevalence of ASD among eight-year-olds was 14.7 per 1,000 or one in 68.8 ASD is four to 
five times more common in boys than girls, and white children are more often identified with ASD than black or 
Hispanic children. An accurate diagnosis can generally be made by age two. The evaluation includes develop-
mental screening and diagnostic evaluation (i.e., hearing, vision, neurologic, laboratory testing for metabolic 
disorders, and genetic testing). 

A large body of evidence supports a genetic etiology in ASD. Twin studies estimate heritability between 60% and 
90%.9 A family with an affected child has a 13% to 19% risk for recurrence in subsequent children.10 Based on 
Swedish genetic studies, Gaugler et al (2014) concluded that “the bulk of autism arises from genetic variation” 
(as opposed to environmental causes).11 Still, although genetic determinants can be heritable, most appear to 
arise de novo.9 

For these reasons, a child with ASD is often evaluated with genetic testing. Testing may be targeted when a child 
has a recognizable syndrome such as those shown in Table 1. Alternatively, high-resolution cytogenetic analysis 
evaluating multiple genes—the focus of this protocol—is used.  

Table 1. Examples of Specific Genes Associated With Disorders That Include Autistic Behaviors 
Gene(Syndrome) Patient Selection Yield, % Reference 
FMR1 (fragile X) Unselected autism 3-10  
MECP2 (Rett) Females with nonsyndromic 

autism, intellectual 
disability, and cerebral palsy  

3-13 Schaefer and Mendelsohn (2008)12 

PTEN Autism with macrocephaly ≤17 Butler et al (2005)13 

DIAGNOSTIC TESTING 

Karyotyping and FISH 

The goal of a cytogenetic evaluation is to identify chromosomal imbalances that cause a disorder. The most 
common imbalances are copy number variants (CNVs) or deletions and duplications of large segments of geno-
mic material. CNVs are common in DD/ID and ASD but more often reflect normal genetic variation.14 However, 
de novo CNVs are observed about four times more frequently in children with ASD than in normal individuals.9 

Less frequently, other abnormalities such as balanced translocations (i.e., exchanges of equally sized DNA loci 
between chromosomes) may be pathogenic. For many well described syndromes, the type and location of the 
associated chromosomal abnormality have been established by studying large patient samples. For others, few 
patients with similar abnormalities may have been evaluated to establish genotype-phenotype correlation.  
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Finally, in some patients, cytogenetic analysis will discover chromosomal abnormalities that require study to 
determine their significance. 

Prior to the advent of CMAs, the initial step in cytogenetic analysis was G-banded karyotyping, which evaluates 
all chromosomes. High-resolution G-banding can detect changes as small as three to five megabases in size, 
although standard G-banding evaluates more than 10 megabases changes. In children with DD/ID, a review by 
Stankiewicz and Beaudet (2007) found G-banded karyotyping diagnostic in approximately 3% to 5%.15 In ASD, 
high-resolution karyotyping appears to identify abnormalities in up to 5% of cases.16 

In contrast, molecular cytogenetic techniques can detect small submicroscopic chromosomal alterations. FISH, a 
targeted approach, is used to identify specific chromosomal abnormalities associated with suspected diagnoses 
such as DiGeorge syndrome. Prior to CMAs, FISH was also used to screen the rearrangement-prone subtelomeric 
regions. Subtelomeric FISH was found to identify abnormalities in children with DD and ID,17 diagnostic in 
approximately 5% to 6% of those with negative karyotypes, but uncommonly in ASD.18 

Chromosomal Microarrays 

Two types of CMAs are considered here: array comparative genomic hybridization (aCGH) and single nucleotide 
variants (SNV) arrays. The aCGH approach uses DNA samples from a patient and a normal control. Each is label-
ed with distinct fluorescent dyes (red or green). The labeled samples are then mixed and hybridized to thou-
sands of cloned or synthesized reference (normal) DNA fragments of known genomic locus immobilized on a 
glass slide (microarray) to conduct thousands of comparative reactions simultaneously. CNVs are determined by 
computer analysis of the array patterns and intensities of the hybridization signals. If the patient sequence is 
missing part of the normal sequence (a deletion) or has the normal sequence plus additional genomic material 
within that genomic location (e.g., a duplication), the sequence imbalance is detected as a difference in fluores-
cence intensity (Korf and Rehm [2013]19 offer an illustrative graphic). For this reason, aCGH cannot detect 
balanced chromosomal translations (equal exchange of material between chromosomes) or sequence inversions 
(same sequence is present in reverse base pair order) because the fluorescence intensity would not change. A 
portion of the increased diagnostic yield from CMA over karyotyping comes from the discovery that chromoso-
mal rearrangements that appear balanced (and therefore not pathogenic) by G-banded karyotype analysis are 
found to have small imbalances with greater resolution. It has been estimated that 40% of apparently balanced 
de novo or inherited translocations with abnormal phenotype are associated with cryptic deletion if analyzed by 
CMA testing. 

Like aCGH, SNV arrays detect CNVs. In an SNV array, the two alleles for genes of interest are tagged with differ-
ent florescent dyes. Comparative florescence intensity will be increased when there are duplications and dimin-
ished with deletions. The resolution provided by aCGH is higher than with SNV arrays. In addition, aCGH has 
better signal-to-background characteristics than SNV arrays. In contrast to aCGH, SNV arrays will also identify 
long stretches of DNA homozygosity, which may suggest uniparental disomy or consanguinity. Uniparental 
disomy occurs when a child inherits two copies of a chromosome from one parent and no copies from the other 
parent. Uniparental disomy can lead to syndromes such as Angelman and Prader-Willi. 

Table 2 summarizes the cytogenetic tests used to evaluate children with DD/ID and autism. The table empha-
sizes the large difference in resolution between karyotyping and CMA. 

Table 2. Resolution and Analysis Comparison of FISH, Karyotyping, and CMA Analysis 
Test Resolution in Kilobasesa Analysis 

Karyotyping 3000-5000 kb Genome-wide 
CMA ≈50 kb Genome-wide 
FISH ≈500 to 1000 kb (depending on probe) Targeted 

CMA: chromosomal microarray; FISH: fluorescent in situ hybridization; kb: kilobases. 
a One kb = 1000 bases, 1000 kb = one Mb. 
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Microarrays may be prepared by the laboratory using the technology or, more commonly, by commercial man-
ufacturers, and sold to laboratories that must qualify and validate the product for use in their assay, in conjunc-
tion with computerized software for interpretation. The proliferation of laboratory-developed and commercially 
available platforms prompted the American College of Medical Genetics to publish guidelines for the design and 
performance expectations for clinical microarrays and associated software in the postnatal setting.20 

Next-Generation Sequencing 

Next-generation sequencing (NGS) has been proposed to detect single-gene causes of autism and possibly iden-
tify a syndrome that involves autism in patients with normal array-based testing. NGS involves the sequencing of 
millions of fragments of genetic material in a massively parallel fashion. NGS can be performed on segments of 
genetic material of various sizes-from the entire genome (whole genome sequencing) to small subsets of genes 
(targeted sequencing). NGS allows the detection of SNVs, CNVs, insertions, and deletions. With higher resolution 
comes higher likelihood of detection of variants of uncertain significance. 

GENETIC ASSOCIATIONS WITH DD/ID AND ASD 

For common phenotypes and syndromes, the pathogenicity of CNVs may be supported by considerable evi-
dence; for uncommon phenotypes and uncommon CNVs determining pathogenicity requires a systematic evalu-
ation that includes parental studies, examining databases for reported associations, and considering the molec-
ular consequences of the identified variant. Parental studies (e.g., “trio” testing of affected child, father, and 
mother) can identify an inherited CNV from an unaffected parent and therefore considered benign.21 A variety of 
databases index the clinical implications of CNVs and their associations with a particular phenotype. CNVs are 
continuously cataloged and, with growth in CMA testing and improved resolution, databases have become 
increasingly extensive (e.g., DECIPHER [https://decipher.sanger.ac.uk], ClinVar [http://www.ncbi.nlm.nih.gov/clinvar/]). 
For uncommon CNVs, in addition to reports of CNV-phenotype associations, the location and size of the CNV can 
offer clues to pathogenicity; larger CNVs are more often pathogenic and the role of affected genes in brain 
circuitry and effect of CNV on gene expression can implicate pathogenicity. Although uncommon, an observed 
phenotype can result from unmasking a mutated recessive allele on the unaffected (non-CNV) chromosome.22 
Other considerations when determining pathogenicity include CNV dosage, X linkage, number of reports in the 
literature of an association between CNV and phenotype, and findings in “normal” individuals. 

The American College of Medical Genetics has published guidelines for evaluating, interpreting, and reporting 
pathogenicity reflecting these principles.23 The recommended categories of clinical significance for reporting are 
pathogenic, uncertain clinical significance (likely pathogenic, likely benign, or no subclassification), or benign. 
The International Standards for Cytogenomic Arrays Consortium more recently proposed “an evidence-based 
approach to guide the development of content on chromosomal microarrays and to support interpretation of 
clinically significant copy number variation.”24 The proposal defined levels of evidence describe how well or how 
poorly detected variants or CNVs correlate with phenotype. 

FRAGILE X SYNDROME 

Fragile X Syndrome 

Fragile X syndrome (FXS) is the most common cause of heritable intellectual disability, characterized by moder-
ate intellectual disability in males and mild intellectual disability in females. FXS affects approximately one in 
4,000 males and one in 8,000 females. In addition to intellectual impairment, patients present with typical facial 
features, such as an elongated face with prominent forehead, protruding jaw, and large ears. Connective tissue 
anomalies include hyperextensible finger and thumb joints, hand calluses, velvet-like skin, flat feet, and mitral 
valve prolapse. The characteristic appearance of adult males includes macroorchidism. Patients may show 
behavioral problems including autism spectrum disorders, sleeping problems, social anxiety, poor eye contact, 
mood disorders, and hand-flapping or biting. Another prominent feature of the disorder is neuronal hyperexcit-

https://decipher.sanger.ac.uk/
http://www.ncbi.nlm.nih.gov/clinvar/
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ability, manifested by hyperactivity, increased sensitivity to sensory stimuli, and a high incidence of epileptic sei-
zures. 

Fragile X syndrome (FXS) is associated with the expansion of the CGG trinucleotide repeat in the fragile X mental 
retardation 1 (FMR1) gene on the X chromosome. FXS is associated with the expansion of the FMR1 gene CGG 
triplet repeat above 200 units in the 5’ untranslated region of FMR1, leading to hypermethylation of the pro-
moter region followed by transcriptional inactivation of the gene. FXS is caused by a loss of the fragile X mental 
retardation protein, which is believed to play a key role in early brain development and brain function. 

Fragile X-Associated Disorders 

Patients with a pre-mutation (55-200 CGG repeats) may develop an FMR1-related disorder, such as fragile 
X‒associated tremor or ataxia syndrome or, in women, fragile X‒associated premature ovarian insufficiency 
(FXPOI). Fragile X–associated tremor or ataxia syndrome is a late-onset syndrome, comprising progressive 
development of intention tremor and ataxia, often accompanied by progressive cognitive and behavioral diffi-
culties, including memory loss, anxiety, reclusive behavior, deficits of executive function, and dementia. FXPOI is 
characterized by ovarian failure before the 40 years of age. Full mutation: greater than 200-230 CGG repeats 
(methylated). 

Diagnosis 

DNA studies are used to test for FXS. Cytogenetic testing was used before identification of the FMR1 gene and is 
significantly less accurate than the current DNA test. Genotypes of individuals with symptoms of FXS and indi-
viduals at risk for carrying the variant can be determined by examining the size of the trinucleotide repeat seg-
ment and methylation status of the FMR1 gene. Two main approaches are used: polymerase chain reaction 
(PCR) and Southern blot analysis. 

PCR analysis uses flanking primers to amplify a fragment of DNA spanning the repeat region. Thus, the sizes of 
PCR products are indicative of the approximate number of repeats present in each allele of the individual being 
tested. The efficiency of PCR is inversely related to the number of CGG repeats, so large mutations are more dif-
ficult to amplify and may fail to yield a detectable product in the PCR assay. This, and the fact that no informa-
tion is obtained about FMR1 methylation status, are limitations of the PCR approach. On the other hand, PCR 
analysis permits accurate sizing of alleles in the normal zone, the “gray zone,” and pre-mutation range on small 
amounts of DNA in a relatively short turnaround time. Also, the assay is not affected by skewed X-chromosome 
inactivation.112, 113 

The difficulty in fragile X testing is that the high fraction of GC bases in the repeat region makes it extremely dif-
ficult for standard PCR techniques to amplify beyond 100 to 150 CGG repeats. Consequently, Southern blot 
analysis is commonly used to determine the number of triplet repeats in FXS and methylation status. Alterna-
tives to Southern blotting for determining FMR1 methylation status have been developed. They include methyl-
ation-sensitive PCR and methylation-specific melting curve analysis.3-6 One test currently available in Europe 
(FastFraX; TNR Diagnostics, Singapore) combines a direct triplet repeat-primed PCR with melting curve analysis 
for detecting CGG expansions.118 

In 2011, a panel of genotyping reference materials for FXS was developed and is expected to be stable over 
many years and available to all diagnostic laboratories. A panel of five genomic DNA samples (normal female, 
female pre-mutation, male pre-mutation, male full mutation, and female full mutation) was endorsed by the 
European Society of Human Genetics and approved as an International Standard by the Expert Committee on 
Biological Standardization at the World Health Organization. 

Treatment 

Current approaches to therapy are supportive and symptom-based. Psychopharmacologic intervention to mod-
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ify behavioral problems in a child with FXS may represent an important adjunctive therapy when combined with 
other supportive strategies including speech therapy, occupational therapy, and special education services. 
Medication management may be indicated to modify attention deficits, impaired impulse control, and hyperac-
tivity. Anxiety-related symptoms, including obsessive-compulsive tendencies with perseverative behaviors, also 
may be present and require medical intervention. Emotional lability and episodes of aggression and self-injury 
may be a danger to the child and others around him or her; therefore, the use of medication(s) to modify these 
symptoms also may significantly improve an affected child’s ability to participate more successfully in activities 
in the home and school settings. 

RETT SYNDROME 

Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily affecting girls, with an incidence of one 
in 10,000 female births, making it among the most common genetic causes of intellectual disability in girls.128 In 
its typical form, RTT is characterized by apparently normal development for the first six to 18 months of life, 
followed by regression of intellectual functioning, acquired fine and gross motor skills, and social skills. Pur-
poseful use of the hands is replaced by repetitive stereotyped hand movements, such as hand-wringing.128 Other 
clinical manifestations include seizures, disturbed breathing patterns with hyperventilation and periodic apnea, 
scoliosis, growth retardation, and gait apraxia.129 

There is wide variability in the rate of progression and severity of the disease. In addition to the typical (or clas-
sic) form of RTT, there are recognized atypical variants. Three distinct atypical variants have been described: 
preserved speech, early seizure, and congenital variants. RTT occurring in males is also considered a variant type 
and is associated with somatic mosaicism or Klinefelter (XXY) syndrome. A small number of RTT cases in males 
arising from the MECP2 exon 1 variant have been reported. Diagnostic criteria for typical (or classic) RTT and 
atypical (or variant) RTT have been established.128-130 For typical RTT, a period of regression followed by recovery 
or stabilization and fulfillment of all the main criteria are required to meet the diagnostic criteria for classic RTT. 
For atypical RTT, a period of regression followed by recovery or stabilization, at least two of the four main cri-
teria, plus five of 11 supportive are required to meet the diagnostic criteria of variant RTT. 

Treatment 

Currently, there are no specific treatments that halt or reverse disease progression, and there are no known 
medical interventions that will change the outcome of patients with RTT. Management is mainly symptomatic 
and individualized, focusing on optimizing each patient’s abilities.128 A multidisciplinary approach is usually 
applied, with specialist input from dietitians, physical therapists, occupational therapists, speech therapists, and 
music therapists. Regular monitoring for scoliosis (seen in ≈87% of patients by age 25 years) and possible heart 
abnormalities, particularly cardiac conduction abnormalities, may be recommended. Spasticity can have a major 
impact on mobility; physical therapy and hydrotherapy may prolong mobility. Occupational therapy can help 
children develop communication strategies and skills needed for performing self-directed activities (e.g., dress-
ing, feeding, practicing arts and crafts). 

Pharmacologic approaches to managing problems associated with RTT include melatonin for sleep disturbances 
and several agents to control breathing disturbances, seizures, and stereotypic movements. RTT patients have 
an increased risk of life-threatening arrhythmias associated with a prolonged QT interval, and avoidance of a 
number of drugs is recommended, including prokinetic agents, antipsychotics, tricyclic antidepressants, anti-
arrhythmics, anesthetic agents, and certain antibiotics. 

In a mouse model of RTT, genetic manipulation of the MECP2 gene has demonstrated reversibility of the genetic 
defect.131,132 

Genetics 

RTT is an X-linked dominant genetic disorder. Pathogenic variants in the MECP2 gene, which is thought to con-
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trol expression of several genes, including some involved in brain development, were first reported in 1999. 
Subsequent screening has shown that over 80% of patients with classic RTT have pathogenic variants in the 
MECP2 gene. More than 200 pathogenic variants in MECP2 have been associated with RTT.133 However, eight of 
the most commonly occurring missense and nonsense variants account for almost 70% of all cases; small C-ter-
minal deletions account for approximately 10%; and large deletions, 8% to 10%.134 MECP2 variant type is associ-
ated with disease severity.135 Whole duplications of the MECP2 gene have been associated with a severe X-
linked intellectual disability with progressive spasticity, no or poor speech acquisition, and acquired microceph-
aly. Additionally, the pattern of X-chromosome inactivation influences the severity of the clinical disease in 
females.136,137 

Because the spectrum of clinical phenotypes is broad, to facilitate genotype-phenotype correlation analyses, the 
International Rett Syndrome Association has established a locus-specific MECP2 variation database (RettBASE) 
and a phenotype database (InterRett). 

Approximately 99.5% of cases of RTT are sporadic, resulting from a de novo variant, which arises almost exclu-
sively on the paternally derived X chromosome. The remaining 0.5% of cases are familial and usually explained 
by germline mosaicism or favorably skewed X-chromosome inactivation in the carrier mother that results in her 
being unaffected or only slightly affected (mild intellectual disability). In the case of a carrier mother, the recur-
rence risk of RTT is 50%. If a variant is not identified in leukocytes of the mother, the risk to a sibling of the pro-
band is below 0.5% (because germline mosaicism in either parent cannot be excluded). 

Identification of a variant in MECP2 does not necessarily equate to a diagnosis of RTT. Rare cases of MECP2 vari-
ants also have been reported in other clinical phenotypes, including individuals with an Angelman-like picture, 
nonsyndromic X-linked intellectual disability, PPM-X syndrome (an X-linked genetic disorder characterized by 
psychotic disorders [most commonly bipolar disorder], parkinsonism, and intellectual disability), autism, and 
neonatal encephalopathy.131,136,142 Recent studies have revealed that different classes of genetic variants in 
MECP2 result in variable clinical phenotypes and overlap with other neurodevelopmental disorders.140-142 

A proportion of patients with a clinical diagnosis of RTT do not appear to have pathogenic variants in the MECP2 
gene. Two other genes (CDKL5, FOXG1) have been shown to be associated with atypical variants. 

 

REGULATORY STATUS 

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; labora-
tory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement 
Act (CLIA). Lab tests for CMA, NGS, genetic testing for Rett syndrome and the Xpansion Interpreter® test are 
available under the auspices of CLIA. Laboratories that offer LDTs must be licensed by CLIA for high-complexity 
testing. To date, the FDA has chosen not to require any regulatory review of these tests. 

In July 2010, FDA indicated that it will in the future require microarray manufacturers to seek clearance to sell 
their products for use in clinical cytogenetics. 

Asuragen offers the Xpansion Interpreter® test, which analyzes AGG sequences that interrupt CGG repeats and 
may stabilize alleles, protecting against expansion in subsequent generations.119,120 

CMA TESTING 

CMA testing is commercially available through many laboratories and includes targeted and whole genome 
arrays, with or without SNV microarray analysis. 

In January 2014, the Affymetrix CytoScan® Dx Assay (Thermo Fisher Scientific) was cleared by FDA through the 
de novo 510(k) process. FDA’s review of the CytoScan® Dx Assay included an analytic evaluation of the test’s 
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ability to detect accurately numerous chromosomal variations of different types, sizes, and genome locations 
compared with several analytically validated test methods. FDA found that the CytoScan® Dx Assay could detect 
CNVs across the genome and adequately detect CNVs in regions of the genome associated with ID/DD. Repro-
ducibility decreased with the CNV gain or loss size, particularly when less than approximately 400 kilobases 
(generally recommended as the lower reporting limit). As of July 2017, Affymetrix™ has reported 2.69 million 
markers for copy number, 750,000 biallelic probes, and 1.9 million polymorphic probes (Affymetrix™ was 
acquired by Thermo Fisher Scientific in 2016). FDA product code: PFX. 

FirstStepDx PLUS® (Lineagen) uses Lineagen’s custom-designed microarray platform manufactured by Affyme-
trix. As of July 2017, this microarray consists of a 2.8 million probe microarray for the detection of CNVs asso-
ciated with neurodevelopmental disorders. The array includes probes that come standard on the Affymetrix 
CytoScan HD® microarray, with an additional 88,435 custom probes designed by Lineagen. 

Ambry Genetics offers multiple tests (CMA and NGS) designed for diagnosing ASD and neurodevelopmental dis-
orders. As of July 2017, the CMA offered by Ambry Genetics includes over 2.6 million probes for copy number 
and 750,000 SNV probes. The expanded NGS panel for neurodevelopmental disorders includes assesses 196 
genes. 

LabCorp offers the Reveal® SNP Microarray-Pediatric for individuals with nonsyndromic congenital anomalies, 
dysmorphic features, DD/ID, and/or ASD. The Reveal® microarray has 2695 million probes as of July 2017. 

NEXT-GENERATION SEQUENCING 

A variety of commercial and academic laboratories offer NGS panels designed for the evaluation of ASD, DD/ID, 
and congenital anomalies, which vary in terms of the numbers of and specific genes tested. 

Emory Genetics Laboratory (North Decatur, GA) offers an NGS ASD panel of genes targeting genetic syndromes 
that include autism or autistic features. 

Greenwood Genetics Center (Greenwood, SC) offers an NGS panel for syndromic autism that includes 83 genes. 

 

RELATED PROTOCOLS 

Chromosomal Microarray Testing for the Evaluation of Early Pregnancy Loss and Intrauterine Fetal Demise 

Invasive Prenatal (Fetal) Diagnostic Testing 

Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders 

 

 

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are 
considered investigational. For explanation of experimental and investigational, please refer to the Technology 
Assessment Protocol. 

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to 
conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced 
procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to 
products that are not available in your geographic area. 
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