Preauthorization is required.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With suspected congenital long QT syndrome</td>
<td>• Genetic testing for variants associated with congenital long QT syndrome</td>
<td>• Standard management without genetic testing</td>
<td>• Overall survival</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Test accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Test validity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Other test performance measures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Changes in reproductive decision making</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Morbid events</td>
</tr>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• Who are asymptomatic with close relative(s) with a known long QT syndrome variant</td>
<td>• Genetic testing for variants associated with congenital long QT syndrome</td>
<td>• Standard management without genetic testing</td>
<td>• Overall survival</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Test accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Test validity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Other test performance measures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Changes in reproductive decision making</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Morbid events</td>
</tr>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With suspected Brugada syndrome</td>
<td>• Genetic testing for variants associated with Brugada syndrome</td>
<td>• Standard management without genetic testing</td>
<td>• Overall survival</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Test accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Test validity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Other test performance measures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Changes in reproductive decision making</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Morbid events</td>
</tr>
<tr>
<td>Populations</td>
<td>Interventions</td>
<td>Comparators</td>
<td>Outcomes</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
</tbody>
</table>
| • Who are asymptomatic with close relative(s) with a known Brugada syndrome variant | • Genetic testing for variants associated with Brugada syndrome | • Standard management without genetic testing | • Overall survival
• Test accuracy
• Test validity
• Other test performance measures
• Changes in reproductive decision making
• Morbid events |
| Individuals: | Interventions of interest are: | Comparators of interest are: | Relevant outcomes include: |
| • With suspected catecholaminergic polymorphic ventricular tachycardia | • Genetic testing for variants associated with catecholaminergic polymorphic ventricular tachycardia | • Standard management without genetic testing | • Overall survival
• Test accuracy
• Test validity
• Other test performance measures
• Changes in reproductive decision making
• Morbid events |
| Individuals: | Interventions of interest are: | Comparators of interest are: | Relevant outcomes include: |
| • Who are asymptomatic with close relative(s) with a known variant associated with catecholaminergic polymorphic ventricular tachycardia | • Genetic testing for variants associated with catecholaminergic polymorphic ventricular tachycardia | • Standard management without genetic testing | • Overall survival
• Test accuracy
• Test validity
• Other test performance measures
• Changes in reproductive decision making
• Morbid events |
| Individuals: | Interventions of interest are: | Comparators of interest are: | Relevant outcomes include: |
| • With suspected short QT syndrome | • Genetic testing for variants associated with short QT syndrome | • Standard management without genetic testing | • Overall survival
• Test accuracy
• Test validity
• Other test performance measures
• Changes in reproductive decision making
• Morbid events |
| Individuals: | Interventions of interest are: | Comparators of interest are: | Relevant outcomes include: |
| • Who are asymptomatic with close relative(s) with a known variant associated with short QT syndrome | • Genetic testing for variants associated with short QT syndrome | • Standard management without genetic testing | • Overall survival
• Test accuracy
• Test validity
• Other test performance measures
• Changes in reproductive decision making
• Morbid events |

Description

Genetic testing is available for patients suspected of having cardiac ion channelopathies, including long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT), Brugada syndrome (BrS), and short QT syndrome (SQTS). These disorders are clinically heterogeneous and may range from asymptomatic to
presenting with sudden cardiac death. Testing for variants associated with these channelopathies may assist in diagnosis, risk-stratify prognosis, and/or identify susceptibility for the disorders in asymptomatic family members.

Summary of Evidence

Long QT Syndrome

For individuals with suspected congenital LQTS who receive genetic testing for variants associated with congenital LQTS, the evidence includes studies reporting on the yield of testing among patients with clinically suspected or clinically diagnosed disorders, a history of sudden cardiac arrest, and/or family members with sudden cardiac death. Relevant outcomes are overall survival, test accuracy and validity, other test performance measures, changes in reproductive decision making, and morbid events. A genetic variant can be identified in approximately 72% to 80% of LQTS. Most are point variants identified by gene sequencing analysis; however, a small number are deletions and duplications best identified by chromosomal microarray (CMA) analysis. The analytic validity of testing for point variants by sequence analysis is high, while the analytic validity of testing for deletions/duplications by CMA analysis is less certain. The clinical validity of testing in LQTS is high, in the range of 70% to 80%. The clinical utility of genetic testing for LQTS is high when there is a moderate-to-high pretest probability and when the diagnosis cannot be made with certainty by other methods. A definitive diagnosis of either channelopathy leads to treatment with β-blockers in most cases, and sometimes to treatment with an implantable cardiac defibrillator (ICD). As a result, confirming the diagnosis is likely to lead to a health outcome benefit by reducing the risk for ventricular arrhythmias and sudden cardiac death. There is a strong chain of evidence to suggest that testing for variants associated with LQTS in individuals who are suspected to have these disorders, but in whom the diagnosis cannot be made by other methods, leads to improved outcomes. Although for LQTS there is evidence suggesting that different genotypes are associated with varying risk of sudden cardiac death, there is insufficient evidence to conclude that the information from genetic testing on risk assessment leads to changes in clinical management. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic with close relative(s) with a known LQTS variant who receive genetic testing for variants associated with congenital LQTS, the evidence includes studies reporting on changes in management that resulted from diagnosing LQTS by testing relatives of affected patients with known LQTS and studies reporting testing yields among patients with clinically suspected disorders, a history of sudden cardiac arrest, and/or family members with sudden cardiac death. Relevant outcomes are overall survival, test accuracy and validity, other test performance measures, changes in reproductive decision making, and morbid events. The clinical utility of testing is high for close relatives of patients with known LQTS variants, because these individuals should also be treated if they are found to have a pathologic variant. In addition, a negative test in the setting of a known familial variant should have a high negative predictive value. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Brugada Syndrome

For individuals with suspected BrS who receive genetic testing for variants associated with BrS, the evidence includes studies reporting on testing yields among patients with clinically suspected disorders, a history of sudden cardiac arrest, and/or family members with sudden cardiac death. Relevant outcomes are overall survival, test accuracy and validity, other test performance measures, changes in reproductive decision making, and morbid events. Although the analytic validity of testing is likely to be high, the clinical validity is lower: a genetic variant can be identified in approximately 25% to 35% of BrS. For BrS management changes, primarily ICD implantation, are directed by clinical symptoms. There is limited evidence about changes in management based on genetic testing in a symptomatic proband without a definitive diagnosis. It is not clear that genetic
diagnosis in the absence of other clinical signs and symptoms leads to a change in management that improves outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are asymptomatic with close relative(s) with a known BrS variant who receive genetic testing for variants associated with congenital BrS, the evidence includes studies reporting on testing yields among patients with clinically suspected disorders, a history of sudden cardiac arrest, and/or family members with sudden cardiac death. Relevant outcomes are overall survival, test accuracy and validity, other test performance measures, changes in reproductive decision making, and morbid events. For BrS, management changes, primarily ICD implantation, are directed by clinical symptoms. There is limited evidence about changes in management based on genetic testing in an individual with family members with a known variant. However, a negative test would allow family members to defer further testing. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Catecholaminergic Polymorphic Ventricular Tachycardia

For individuals with suspected CPVT who receive genetic testing for variants associated with congenital CPVT, the evidence includes studies reporting on testing yields among patients with clinically suspected disorders, a history of sudden cardiac arrest, and/or family members with sudden cardiac death. Relevant outcomes are overall survival, test accuracy and validity, other test performance measures, changes in reproductive decision making, and morbid events. A genetic variant can be identified in approximately 51% to 75% of CPVT patients. The analytic validity of testing for point variants by sequence analysis is high, while the analytic validity of testing for deletions/duplications by CMA analysis is less certain. The clinical validity of testing in CPVT is moderate, in the range of 50% to 75%. The clinical utility of genetic testing for CPVT is high when there is a moderate-to-high pretest probability and when the diagnosis cannot be made with certainty by other methods. Confirming the diagnosis of CPVT is likely to lead to a health outcome benefit by initiating changes in management that reduce the risk for ventricular arrhythmias and sudden cardiac death. There is a strong chain of evidence to suggest that testing for variants associated with CPVT in individuals who are suspected to have these disorders, but in whom the diagnosis cannot be made by other methods, leads to improved outcomes. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic with close relative(s) with a known CPVT variant who receive genetic testing for variants associated with congenital CPVT, the evidence includes studies reporting testing yields among patients with clinically suspected disorders, a history of sudden cardiac arrest, and/or family members with sudden cardiac death. Relevant outcomes are overall survival, test accuracy and validity, other test performance measures, changes in reproductive decision making, and morbid events. The clinical utility of testing is high for close relatives of patients with known CPVT variants, because these individuals should also be treated if they are found to have a pathologic variant. In addition, a negative test in the setting of a known familial variant should have a high negative predictive value. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Short QT Syndrome

For individuals with suspected SQTS who receive genetic testing for variants associated with SQTS, the evidence includes limited data on testing yields among patients with clinically suspected disorders and/or family members with sudden cardiac death. Relevant outcomes are overall survival, test accuracy and validity, other test performance measures, changes in reproductive decision making, and morbid events. Although the analytic validity of testing for is likely to be high, the clinical validity is lower: a genetic variant can be identified in approximately 15% to 20% of SQTS patients. For SQTS, management changes, primarily ICD implantation, are directed by clinical symptoms. There is limited evidence about changes in management based on genetic testing in a symptomatic proband without a definitive diagnosis. It is not clear that genetic diagnosis in the absence of other clinical signs and symptoms leads to a change in management that improves outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.
For individuals who are asymptomatic with close relative(s) with a known with a known SQTS variant who receive genetic testing for variants associated with congenital SQTS, the evidence includes studies reporting on testing yields among patients with clinically suspected disorders and/or family members with sudden cardiac death. Relevant outcomes are overall survival, test accuracy and validity, other test performance measures, changes in reproductive decision making, and morbid events. For SQTS, management changes, primarily ICD implantation, are directed by clinical symptoms. There is limited evidence about changes in management based on genetic testing in an individual with family members with a known variant. It is not clear that genetic diagnosis in the absence of other clinical signs and symptoms leads to a change in management that improves outcomes. The evidence is insufficient to determine the effects of the technology on health outcomes.

Policy

Long QT Syndrome

Genetic testing to confirm a diagnosis of congenital long QT syndrome (LQTS) may be considered medically necessary when signs and/or symptoms of LQTS are present but a definitive diagnosis cannot be made without genetic testing. This includes:

- Individuals who do not meet the clinical criteria for LQTS (i.e., those with a Schwartz score less than four): but have a moderate-to-high pretest probability (see Policy Guidelines) based on the Schwartz score and/or other clinical criteria.

Genetic testing of asymptomatic individuals to determine future risk of LQTS may be considered medically necessary when at least one of the following criteria is met:

- A close relative (i.e., first-, second-, or third-degree relative) with a known LQTS variant; or
- A close relative diagnosed with LQTS by clinical means whose genetic status is unavailable.

Genetic testing for LQTS for all other situations not meeting the criteria outlined above, including but not limited to determining prognosis and/or directing therapy in patients with known LQTS, is considered investigational.

Brugada Syndrome

Genetic testing to confirm a diagnosis of Brugada syndrome (BrS) may be considered medically necessary when signs and/or symptoms consistent with BrS (see Policy Guidelines) are present but a definitive diagnosis cannot be made without genetic testing.

Genetic testing of asymptomatic individuals to determine future risk of BrS may be considered medically necessary when patients have a close relative (i.e., first-, second-, or third-degree relative) with a known BrS variant.

Genetic testing for BrS for all other situations not meeting the criteria outlined above is considered investigational.

Catecholaminergic Polymorphic Ventricular Tachycardia

Genetic testing to confirm a diagnosis of catecholaminergic polymorphic ventricular tachycardia (CPVT) may be considered medically necessary when signs and/or symptoms of CPVT are present, but a definitive diagnosis cannot be made without genetic testing.

Genetic testing of asymptomatic individuals to determine future risk of CPVT may be considered medically necessary when at least one of the following criteria is met:

- a close relative (i.e. first-, second-, or third-degree relative) with a known CPVT variant; or
Protocol
Genetic Testing for Cardiac Ion Channelopathies

• a close relative diagnosed with CPVT by clinical means whose genetic status is unavailable.

Genetic testing for CPVT for all other situations not meeting the criteria outlined above is considered investigational.

Short QT Syndrome

Genetic testing of asymptomatic individuals to determine future risk of short QT syndrome (SQTS) may be considered medically necessary when patients have a close relative (i.e., first-, second-, or third-degree relative) with a known SQTS variant.

Genetic testing for SQTS for all other situations not meeting the criteria outlined above is considered investigational.

Policy Guidelines

Genetic testing should be performed by an individual with adequate expertise in genetic testing and/or cardiac ion channelopathies.

Determining the pretest probability of LQTS is not standardized. An example of a patient with a moderate-to-high pretest probability of LQTS is a patient with a Schwartz score of two or three.

An index patient with suspected SQTS would be expected to have a shortened (shorter than two SD below the mean) rate-corrected shortened QT interval (QTc). Cutoffs below 350 ms for men and 360 ms for women have been derived from population normal values (Tristani-Firouzi, 2004). The presence of a short QTc interval alone does not make the diagnosis of SQTS. Clinical history, family history, other electrocardiographic findings, and genetic testing may be used to confirm the diagnosis.

Signs and symptoms suggestive of BrS include the presence of characteristic electrocardiographic (ECG) pattern, documented ventricular arrhythmia, sudden cardiac death in a family member younger than 45 years old, a characteristic electrocardiographic pattern in a family member, inducible ventricular arrhythmias on electrophysiologic studies, syncope, or nocturnal agonal respirations.

Testing Strategy

In general, testing for patients with suspected congenital LQTS, CPVT or BrS should begin with a known familial mutation, if one has been identified.

In cases where the family member’s genetic diagnosis is unavailable, testing is available through either single-gene testing or panel testing. The evaluation of the clinical utility of panel testing is outlined in the General Approach to Evaluating the Utility of Genetic Panels Protocol. Panels for cardiac ion channelopathies are diagnostic test panels that may fall into one of several categories: panels that include variants for a single condition; panels that include variants for multiple conditions (indicated plus nonindicated conditions); panels that include mutations for multiple conditions (clinical syndrome for which clinical diagnosis not possible).

For situations in which a relative of a proband with unexplained cardiac death or unexplained sudden cardiac arrest or an individual with unexplained sudden cardiac arrest is being evaluated, genetic testing may be part of a diagnostic strategy that includes a comprehensive history and physical exam and 12-lead electrocardiogram (ECG), along with exercise stress test, transthoracic echocardiography, and additional evaluation as guided by the initial studies. Studies suggest that in such cases, a probable diagnosis of an inherited cardiac condition can be made following a nongenetic evaluation in 50% to 80% of cases (Behr et al, 2008; Krahne et al, 2009; Kumar et al, 2013; Wong et al, 2014). If, after a comprehensive evaluation, a diagnosis of CPVT, or LQTS or BrS is suspected but not definitive (i.e., if there is a moderate-to-high pretest probability of either condition), genetic testing could be considered.
Genetic Counseling

Genetic counseling is primarily aimed at patients who are at risk for inherited disorders, and experts recommend formal genetic counseling in most cases when genetic testing for an inherited condition is considered. The interpretation of the results of genetic tests and the understanding of risk factors can be very difficult and complex. Therefore, genetic counseling will assist individuals in understanding the possible benefits and harms of genetic testing, including the possible impact of the information on the individual’s family. Genetic counseling may alter the utilization of genetic testing substantially and may reduce inappropriate testing. Genetic counseling should be performed by an individual with experience and expertise in genetic medicine and genetic testing methods.

Medicare Advantage

For Medicare Advantage genetic testing procedures for Cardiac Ion Channelopathies (e.g., Brugada Syndrome, Long QT Syndrome, Short QT Syndrome, Catecholaminergic Polymorphic Ventricular Tachycardia) submitted under the following panels are considered not medically necessary as they are unlikely to impact therapeutic decision-making in the clinical management of the patient:

- genomic sequence analysis panel
- duplication/deletion gene analysis panel.

For Medicare Advantage the following individual genetic tests are unlikely to impact therapeutic decision-making, directly impact treatment, outcome and/or clinical management in the care of the patient and will be denied as not medically necessary:

- SCN5A
- RYR2

Background

Cardiac ion channelopathies result from variants in genes that code for protein subunits of the cardiac ion channels. These channels are essential cell membrane components that open or close to allow ions to flow into or out of the cell. Regulation of these ions is essential for the maintenance of a normal cardiac action potential. This group of disorders is associated with ventricular arrhythmias and an increased risk of sudden cardiac death (SCD). These congenital cardiac channelopathies can be difficult to diagnose, and the implications of an incorrect diagnosis could be catastrophic.

The prevalence of any cardiac channelopathy is still ill-defined but is thought to be between one in 2000 and one in 3000 persons in the general population. Data pertaining to the individual prevalences of LQTS, CPVT, BrS, and SQTS are presented in Table 1. The channelopathies discussed herein are genetically heterogeneous with hundreds of identified variants, but the group of disorders share basic clinical expression. The most common presentation is spontaneous or exercise-triggered syncope due to ventricular dysrhythmia. These can be self-limiting or potentially lethal cardiac events. The electrophysiographic features of each channelopathy are characteristic, but the electrocardiogram (ECG) is not diagnostic in all cases, and some secondary events (e.g., electrolyte disturbance, cardiomyopathies, or subarachnoid hemorrhage) may result in an ECG similar to those observed in a cardiac channelopathy.
Table 1. Epidemiology of Cardiac Ion Channelopathies

<table>
<thead>
<tr>
<th>Variables</th>
<th>LQTS</th>
<th>CPVT</th>
<th>Brugada Syndrome</th>
<th>SQTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence</td>
<td>1:2000-5000</td>
<td>1:7000-10,000</td>
<td>1:6000</td>
<td>Unidentified</td>
</tr>
<tr>
<td>Annual mortality rate</td>
<td>0.3% (LQT1)</td>
<td>3.1%</td>
<td>4%*</td>
<td>Unidentified</td>
</tr>
<tr>
<td></td>
<td>0.6% (LQT2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.56% (LQT3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age at first event, years</td>
<td>14</td>
<td>15</td>
<td>42*</td>
<td>40</td>
</tr>
</tbody>
</table>

Adapted from Modell et al (2012).
CPVT: catecholaminergic polymorphic ventricular tachycardia; ECG: electrocardiogram; LQTS: long QT syndrome; SQTS: short QT syndrome.

Long QT Syndrome

Congenital LQTS is an inherited disorder characterized by the lengthening of the repolarization phase of the ventricular action potential, increasing the risk for arrhythmic events, such as torsades de pointes, which may in turn result in syncope and SCD. Management has focused on the use of β-blockers as first-line treatment, with pacemakers or implantable cardioverter defibrillator (ICD) as second-line therapy.

Congenital LQTS usually manifests before the age of 40 years and may be suspected when there is a history of seizure, syncope, or sudden death in a child or young adult; this history may prompt additional testing in family members. It is estimated that more than half of the 8000 sudden unexpected deaths in children may be related to LQTS. The mortality rate of untreated patients with LQTS is estimated at 1% to 2% per year, although this figure will vary with the genotype.

Frequently, syncope or sudden death occurs during physical exertion or emotional excitement, and thus LQTS has received publicity regarding evaluation of adolescents for participation in sports. In addition, LQTS may be considered when a long QT interval is incidentally observed on an ECG. Diagnostic criteria for LQTS have been established, which focus on ECG findings and clinical and family history (i.e., Schwartz criteria, see the Clinical Diagnosis subsection next). However, measurement of the QT interval is not well-standardized and, in some instances, patients may be considered borderline cases.

In recent years, LQTS has been characterized as an “ion channel disease,” with abnormalities in the sodium and potassium channels that control the excitability of the cardiac myocytes. A genetic basis for LQTS has also emerged, with seven different subtypes recognized, each corresponding to variants in different genes as indicated here. In addition, typical ST-T wave patterns are also suggestive of specific subtypes. Some genetic subtypes are associated with abnormalities outside the cardiac conduction system.

Clinical Diagnosis

The Schwartz criteria are commonly used as a diagnostic scoring system for LQTS. The most recent version is shown in Table 2. A score of four or greater indicates a high probability that LQTS is present; a score of two to three, a moderate-to-high probability; and a score of one or less indicates a low probability of the disorder. Prior to the availability of genetic testing, it was not possible to test the sensitivity and specificity of this scoring system; and because there is still no perfect criterion standard for diagnosing LQTS, the accuracy of this scoring system remains ill-defined.

Table 2. Diagnostic Scoring System for Long QT Syndrome

<table>
<thead>
<tr>
<th>Schwartz Criteria</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrocardiographic findings</td>
<td></td>
</tr>
<tr>
<td>QT corrected > 480 ms</td>
<td>3</td>
</tr>
<tr>
<td>QT corrected 460-470 ms QT corrected < 450 ms</td>
<td>2</td>
</tr>
<tr>
<td>History of torsades de pointes</td>
<td>2</td>
</tr>
</tbody>
</table>
T-wave alternans 1
Notched T waves in three leads 1
Low heart rate for age 0.5

Clinical history
Syncope brought on by stress 2
Syncope without stress 1
Congenital deafness 0.5

Family history
Family members with definite long QT syndrome 1
Unexplained sudden death in immediate family members < 30 years of age 0.5

Brugada Syndrome

BrS is characterized by cardiac conduction abnormalities that increase the risk of syncope, ventricular arrhythmia, and SCD. The disorder primarily manifests during adulthood, although ages between two days and 85 years have been reported. Males are more likely to be affected than females (approximately an 8:1 ratio). BrS is estimated to be responsible for 12% of SCD cases. For both sexes, there is an equally high risk of ventricular arrhythmias or sudden death. Penetrance is highly variable, with phenotypes ranging from asymptomatic expression to death within the first year of life. Management has focused on the use of ICDs in patients with syncope or cardiac arrest and isoproterenol for electrical storms. Patients who are asymptomatic can be closely followed to determine if ICD implantation is necessary.

Clinical Diagnosis

The diagnosis of BrS is made by the presence of a type 1 Brugada pattern on the ECG in addition to other clinical features. This ECG pattern includes a coved ST-segment and a J-point elevation of 0.2 mV or higher followed by a negative T wave. This pattern should be observed in two or more of the right precordial ECG leads (V2-V3). This pattern may be concealed and can be revealed by administering a sodium-channel-blocking agent (e.g., ajmaline or flecainide). Two additional ECG patterns have been described (type 2, type 3) but are less specific for the disorder. The diagnosis of BrS is considered definitive when the characteristic ECG pattern is present with at least one of the following clinical features: documented ventricular arrhythmia, SCD in a family member younger than 45 years old, characteristic ECG pattern in a family member, inducible ventricular arrhythmias on electrophysiology studies, syncope, or nocturnal agonal respirations.

Catecholaminergic Polymorphic Ventricular Tachycardia

CPVT is a rare inherited channelopathy that may present with autosomal dominant or autosomal recessive inheritance. The disorder manifests as a bidirectional or polymorphic ventricular tachycardia (VT) precipitated by exercise or emotional stress. The prevalence of CPVT is estimated between one in 7000 and one in 10,000 persons. CPVT has a mortality rate of 30% to 50% by age 35 and is responsible for 13% of cardiac arrests in structurally normal hearts. CPVT was previously believed to manifest only during childhood, but studies have now identified presentation between infancy and 40 years of age.

Management of CPVT is primarily with the β-blockers nadolol (1-2.5 mg/kg/d) or propranolol (2-4 mg/kg/d). If protection is incomplete (i.e., recurrence of syncope or arrhythmia), then flecainide (100-300 mg/d) may be added. If recurrence continues, an ICD may be necessary with optimized pharmacologic management continued postimplantation. Lifestyle modification with the avoidance of strenuous exercise is recommended for all CPVT patients.

Clinical Diagnosis

Patients generally present with syncope or cardiac arrest during the first or second decade of life. The symptoms are nearly always triggered by exercise or emotional stress. The resting ECG of patients with CPVT is typically normal, but exercise stress testing can induce ventricular arrhythmia in most cases (75%-100%).
ventricular contractions, couplets, bigeminy, or polymorphic VT are possible outcomes to the ECG stress test. For patients who are unable to exercise, an infusion of epinephrine may induce ventricular arrhythmia, but this is less effective than exercise testing.16

Short QT Syndrome

SQTS is characterized by a shortened QT interval on the ECG and, at the cellular level, a shortening of the action potential.17 The clinical manifestations are an increased risk of atrial and/or ventricular arrhythmias. Because of the disease’s rarity, the prevalence and risk of sudden death are currently unknown.13

Clinical Diagnosis

Patients generally present with syncope, presyncope, or cardiac arrest. An ECG with a corrected QT interval less than 330 ms, sharp T wave at the end of the QRS complex, and a brief or absent ST-segment are characteristic of the syndrome.18 However, higher QT intervals on ECG might also indicate SQTS and the clinician has to determine if this is within the normative range of QT values. An index patient with suspected SQTS would be expected to have a shortened (less than two SD below from the mean) rate-corrected shortened QT interval (QTc). Cutoffs below 350 ms for men and 360 ms for women have been derived from population normal values.19 The length of the QT interval was not associated with severity of symptoms in one series of 29 patients with SQTS.20 Electrophysiologic (EP) studies may be used to diagnose SQTS if the diagnosis is uncertain to evaluate for short refractory periods and inducible VT. However, in the series of 29 patients with SQTS described above, VT was inducible in only three of six subjects who underwent an EP study.20 In 2011, a diagnostic scoring system was proposed by Gollob et al to help decision making after a review of 61 SQTS cases (see Table 3).21

Table 3. Diagnostic Scoring System for Short QT Syndrome

<table>
<thead>
<tr>
<th>Gollob Criteria</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrocardiographic findings</td>
<td></td>
</tr>
<tr>
<td>QT corrected < 370 ms</td>
<td>1</td>
</tr>
<tr>
<td>QT corrected < 350 ms</td>
<td>2</td>
</tr>
<tr>
<td>QT corrected < 330 ms</td>
<td>3</td>
</tr>
<tr>
<td>J point-T peak interval < 120 ms</td>
<td>1</td>
</tr>
<tr>
<td>Clinical history</td>
<td></td>
</tr>
<tr>
<td>History of sudden cardiac death</td>
<td>2</td>
</tr>
<tr>
<td>Documented polymorphic ventricular fibrillation or ventricular tachycardia</td>
<td>2</td>
</tr>
<tr>
<td>Unexplained syncope</td>
<td>1</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>1</td>
</tr>
<tr>
<td>Family history</td>
<td></td>
</tr>
<tr>
<td>First- or second-degree relative with high probability short QT syndrome</td>
<td>2</td>
</tr>
<tr>
<td>First- or second-degree relative with autopsy-negative sudden cardiac death</td>
<td>1</td>
</tr>
<tr>
<td>Sudden infant death syndrome</td>
<td>1</td>
</tr>
<tr>
<td>Genotype</td>
<td></td>
</tr>
<tr>
<td>Genotype positive</td>
<td>2</td>
</tr>
<tr>
<td>Mutation of undetermined significance in a culprit gene</td>
<td>1</td>
</tr>
</tbody>
</table>

Clinical Management

The primary management of SQTS is with ICD therapy. The degree to which SQTS is considered likely, based ECG features, family history, personal history of cardiac arrest or ventricular arrhythmias, and the ability to induce ventricular tachycardia on EP studies, typically prompts ICD decisions.

Antiarrhythmic drug management of the disease is complicated because the binding target for QT-prolonging drugs (e.g., sotalol) is Kv11.1, which is coded for by KCNH2, the most common site for variants in SQTS (subtype 1). Treatment with quinidine (which is able to bind to both open and inactivated states of Kv11.1) is an appropriate QT-prolonging treatment. This treatment has been reported to reduce the rate of arrhythmias from 4.9% to 0% per year. For those who recur while on quinidine, an ICD is recommended.6
Genetics of Cardiac Ion Channelopathies

Long QT Syndrome

There are more than 1200 unique variants on at least 13 genes encoding potassium-channel proteins, sodium-channel proteins, calcium channel–related factors, and membrane adaptor proteins that have been associated with LQTS. In addition to single variants, some cases of LQTS are associated with deletions or duplications of genes. This may be the case in up to 5% of total cases of LQTS. These types of variants may not be identified by gene sequence analysis. They can be more reliably identified by chromosomal microarray (CMA) analysis, also known as array comparative genomic hybridization (aCGH). Some laboratories that test for LQTS now offer detection of LQTS-associated deletions and duplications by this testing method. This type of test may be offered separately and may need to be ordered independent of gene sequence analysis when testing for LQTS.

The absence of a variant does not imply the absence of LQTS; it is estimated that variants are only identified in 70% to 75% of patients with a clinical diagnosis of LQTS. A negative test is only definitive when there is a known variant identified in a family member and targeted testing for this variant is negative. Other laboratories have investigated different testing strategies. For example, Napolitano et al (2005) proposed a three-tiered approach, first testing for a core group of 64 codons that have a high incidence of variants, followed by additional testing of less frequent variants.

Another factor complicating interpretation of the genetic analysis is the penetrance of a given variant or the presence of multiple phenotypic expressions. For example, approximately 50% of carriers of variants never have any symptoms. There is variable penetrance for the LQTS, and penetrance may differ for the various subtypes. While linkage studies in the past indicated that penetrance was 90% or greater, a 1999 analysis using molecular genetics has challenged this number, and suggested that penetrance may be as low as 25% for some families.

Variants involving KCNQ1, KCNH2, and SCN5A are the most commonly detected in patients with genetically confirmed LQTS. Some variants are associated with extracardiac abnormalities in addition to the cardiac ion channel abnormalities. A summary of clinical syndromes associated with hereditary LQTS is shown in Table 4.

Table 4: Genetics of Long QT Syndrome

<table>
<thead>
<tr>
<th>Type</th>
<th>Other Names</th>
<th>Chromosome Locus</th>
<th>Mutated Gene</th>
<th>Ion Current(s) Affected</th>
<th>Associated Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQT1</td>
<td>RWS</td>
<td>11p15.5</td>
<td>KVLQT1 or KCNQ1 (heterozygotes)</td>
<td>Potassium</td>
<td></td>
</tr>
<tr>
<td>LQT2</td>
<td>RWS</td>
<td>7q35-36</td>
<td>HERG, KCNH2</td>
<td>Potassium</td>
<td></td>
</tr>
<tr>
<td>LQT3</td>
<td>RWS</td>
<td>3p21-24</td>
<td>SCN5A</td>
<td>Sodium</td>
<td></td>
</tr>
<tr>
<td>LQT4</td>
<td>Ankyrin B syndrome</td>
<td>4q25-27</td>
<td>ANK2, ANKB</td>
<td>Sodium, potassium, and calcium</td>
<td>Catecholaminergic polymorphic ventricular arrhythmias, sinus node dysfunction, AF</td>
</tr>
<tr>
<td>LQT5</td>
<td>RWS</td>
<td>21q22.1-22.2</td>
<td>KCNE1 (heterozygotes)</td>
<td>Potassium</td>
<td></td>
</tr>
<tr>
<td>LQT6</td>
<td>RWS</td>
<td>21q22.1-22.2</td>
<td>MirP1, KNCE2</td>
<td>Potassium</td>
<td></td>
</tr>
<tr>
<td>LQT7</td>
<td>Andersen-Tawil syndrome</td>
<td>17q23.1-q24.2</td>
<td>KCNJ2</td>
<td>Potassium</td>
<td>Episodic muscle weakness, congenital anomalies</td>
</tr>
<tr>
<td>LQT8</td>
<td>Timothy syndrome</td>
<td>12q13.3</td>
<td>CACNA1C</td>
<td>Calcium</td>
<td>Congenital heart defects, hand/foot syndactyly, ASD</td>
</tr>
<tr>
<td>LQT9</td>
<td>RWS</td>
<td>3p25.3</td>
<td>CAV3</td>
<td>Sodium</td>
<td></td>
</tr>
<tr>
<td>LQT10</td>
<td>RWS</td>
<td>11q23.3</td>
<td>SCN4B</td>
<td>Sodium</td>
<td></td>
</tr>
<tr>
<td>LQT11</td>
<td>RWS</td>
<td>7q21-22</td>
<td>AKAP9</td>
<td>Potassium</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Other Names</td>
<td>Chromosome Locus</td>
<td>Mutated Gene</td>
<td>Ion Current(s) Affected</td>
<td>Associated Findings</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>LQT12</td>
<td>RWS</td>
<td>20q11.21</td>
<td>SNTAI</td>
<td>Sodium</td>
<td></td>
</tr>
<tr>
<td>LQT13</td>
<td>RWS</td>
<td>11q24.3</td>
<td>KCNJ5</td>
<td>Potassium</td>
<td></td>
</tr>
<tr>
<td>JLN1</td>
<td>JLNS</td>
<td>11p15.5</td>
<td>KVLQT1 or KCNQ1 (homozygotes or compound heterozygotes)</td>
<td>Potassium</td>
<td>Congenital sensorineural hearing loss</td>
</tr>
<tr>
<td>JLN2</td>
<td>JLNS</td>
<td>21q22.1-22.2</td>
<td>KCNE1 (homozygotes or compound heterozygotes)</td>
<td>Potassium</td>
<td>Congenital sensorineural hearing loss</td>
</tr>
</tbody>
</table>

AF: atrial fibrillation; ASD: autism spectrum disorder; LQT: long QT; JLNS: Jervell and Lange-Nielsen syndrome; RWS: Romano-Ward syndrome.

Brugada Syndrome

BrS is typically inherited in an autosomal dominant manner with incomplete penetrance. The proportion of cases that are inherited, versus de novo variants, is uncertain. Although some have reported up to 50% of cases are sporadic in nature, others have reported that the instance of de novo variants is very low and is estimated to be only 1% of cases.8

Variants in 16 genes have been identified as causative of BrS, all of which lead to either a decrease in the inward sodium or calcium current or to an increase in one of the outward potassium currents. Of these, SCN5A is the most important, accounting for more than an estimated 20% of cases,14 SCN10A has also been implicated. The other genes are of minor significance and account together for approximately 5% of cases.13 The absence of a positive test does not indicate the absence of BrS, with more than 65% of cases not having an identified genetic cause. Penetrance of BrS among persons with an SCN5A variant is 80% when undergoing ECG with sodium channel blocker challenge and 25% when not using the ECG challenge.8

Catecholaminergic Polymorphic Ventricular Tachycardia

Variants in four genes are known to cause CPVT, and investigators believe other unidentified loci are involved as well. Currently, only 55% to 65% of patients with CPVT have an identified causative variant. Variants to the gene encoding the cardiac ryanodine receptor (RYR2) or to KCNJ2 result in an autosomal dominant form of CPVT. CASQ2 (cardiac calsequestrin) and TRDN-related CPVT exhibit autosomal recessive inheritance. Some have reported heterozygotes for CASQ2 and TRDN variants for rare, benign arrhythmias.15 RYR2 variants represent most of CPVT cases (50%-55%), with CASQ2 accounting for 1% to 2% and TRDN accounting for an unknown proportion of cases. The penetrance of RYR2 variants is approximated at 83%.15

An estimated 50% to 70% of patients will have the dominant form of CPVT with a disease-causing variant. Most variants (90%) to RYR2 are missense variants, but in a small proportion of unrelated CPVT patients, large gene rearrangements or exon deletions have been reported.14 Additionally, nearly a third of patients diagnosed as LQTS with normal QT intervals have CPVT due to identified RYR2 variants. Another misclassification, CPVT diagnosed as Anderson-Tawil syndrome, may result in more aggressive prophylaxis for CPVT whereas a correct diagnosis can spare this treatment because Anderson-Tawil syndrome is rarely lethal.

Short QT Syndrome

SQTS has been linked predominantly to variants in three genes (KCNH2, KCNJ2, KCNQ1).27 Variants in genes encoding alpha- and beta-subunits of the L-type cardiac calcium channel (CACNA1C, CACNB2) have also been associated with SQTS. Some individuals with SQTS do not have a variant in these genes, suggesting changes in
other genes may also cause this disorder. SQTS is believed to be inherited in an autosomal dominant pattern. Although sporadic cases have been reported, patients frequently have a family history of the syndrome or SCD.

Genetic Testing for Cardiac Ion Channelopathies

Genetic testing can be comprehensive (testing for all possible variants in multiple genes) or targeted (testing for a single variant identified in a family member). For comprehensive testing, the probability that a specific variant is pathophysiologically significant is greatly increased if the same variant has been reported in other cases. A variant may also be found that has not been definitely associated with a disorder and therefore may or may not be pathologic. Variants are classified by their pathologic potential; an example of such a classification system used in the Familion assay is as follows:

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Deleterious and probable deleterious mutations. These variants have either previously been identified as pathologic (deleterious mutations), represent a major change in the protein, or cause an amino acid substitution in a critical region of the protein(s) (probable deleterious mutations).</td>
</tr>
<tr>
<td>II</td>
<td>Possible deleterious mutations. These variants encode changes to protein(s) but occur in regions that are not considered critical. Approximately 5% of unselected patients without LQTS will exhibit mutations in this category.</td>
</tr>
<tr>
<td>III</td>
<td>Variants not generally expected to be deleterious. These variants encode modified protein(s); however, they are considered more likely to represent benign polymorphisms. Approximately 90% of unselected patients without LQTS will have one or more of these variants; therefore patients with only class III variants are considered “negative.”</td>
</tr>
<tr>
<td>IV</td>
<td>Non-protein-altering variants. These variants are not considered to have clinical significance and are not reported in the results of the Familion test.</td>
</tr>
</tbody>
</table>

Genetic testing for specific disorders, which may include one or more specific genes, is available from multiple academic and commercial laboratories, generally by next-generation sequencing or Sanger sequencing. In addition, panel testing for one or more cardiac ion channelopathies is available from a number of genetic diagnostics laboratories (see Table 5). The John Welsh Cardiovascular Diagnostic Laboratory, GeneDX, and Transgenomic all offer panels that genotype LQTS, CPVT, BrS, and SQTS, but there is some variation among manufacturers on the included genes.

Table 5. Examples of Cardiac Ion Channelopathy Genetic Testing Panels

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>LQTS</th>
<th>CPVT</th>
<th>BrS</th>
<th>SQTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambry Genetics (Aliso Viejo, CA)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>GeneDX (Gaithersburg, MD)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>John Welsh Cardiovascular Diagnostic Laboratory, Baylor College of Medicine(^a) (Houston, TX)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Prevention Genetics (Marshfield, WI)</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transgenomic/Familion(^a) (New Haven, CT)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

BrS: Brugada syndrome; CPVT: catecholaminergic polymorphic ventricular tachycardia; LQTS: long QT syndrome; SQTS: short QT syndrome.

\(^a\) Indicates multigene panel available for sudden cardiac death.

There are also commercially available panels that include genetic testing for cardiac ion channelopathies along with other hereditary cardiac disorders, such as hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy (e.g., iGene Cardiac Panel; ApolloGen, Irvine, CA).
Regulatory Status

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). Laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of this test.

Related Protocol

General Approach to Evaluating the Utility of Genetic Panels

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

References

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

17. Wilders R. Cardiac ion channelopathies and the sudden infant death syndrome. ISRN Cardiol. 2012; 2012:846171. PMID 23304551
18. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. Aug 2011; 8(8):1308-1339. PMID 21787999

