Protocol

Genetic Testing for Epilepsy

(204109)

<table>
<thead>
<tr>
<th>Medical Benefit</th>
<th>Effective Date: 02/01/21</th>
<th>Next Review Date: 11/23</th>
</tr>
</thead>
</table>

Preauthorization is required.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

RELATED PROTOCOLS

- Cytochrome P450 Genotype-Guided Treatment Strategy
- General Approach to Evaluating the Utility of Genetic Panels
- Genetic Testing for FMR1 Variants (Including Fragile X Syndrome)
- Genetic Testing for Rett Syndrome
- Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
</table>
| Individuals:
• With infantile- or early-childhood-onset epileptic encephalopathy | Interventions of interest are:
• Testing for genes associated with epileptic encephalopathies | Comparators of interest are:
• Standard management without genetic testing | Relevant outcomes include:
• Test validity
• Symptoms
• Quality of life
• Functional outcomes
• Medication use
• Resource utilization
• Treatment related morbidity |

| Individuals:
• With presumed genetic epilepsy | Interventions of interest are:
• Testing for genes associated with genetic epilepsies | Comparators of interest are:
• Standard management without genetic testing | Relevant outcomes include:
• Test validity
• Changes in reproductive decision making
• Symptoms
• Quality of life
• Functional outcomes
• Medication use
• Resource utilization
• Treatment related morbidity |
DESCRIPTION

Epilepsy is a disorder characterized by unprovoked seizures. It is a heterogeneous condition that encompasses many types of seizures and varies in age of onset and severity. Many genetic epilepsies are thought to have a complex, multifactorial genetic basis. There are also numerous rare epileptic syndromes associated with global developmental delay and/or cognitive impairment that occur in infancy, or early childhood and that may be caused by a single-gene pathogenic variant. Genetic testing is commercially available for a large number of genes that may be related to epilepsy.

SUMMARY OF EVIDENCE

For individuals who have infantile- or early-childhood-onset epileptic encephalopathy who receive testing for genes associated with epileptic encephalopathies, the evidence includes prospective and retrospective cohort studies describing the testing yield. Relevant outcomes are test validity, symptoms, quality of life, functional outcomes, medication use, resource utilization, and treatment-related morbidity. For Dravet syndrome, which appears to have the largest body of associated literature, the sensitivity of testing for SCN1A disease-associated variants is high (»80%). For other early-onset epileptic encephalopathies, the true clinical sensitivity and specificity of testing are not well-defined. However, studies reporting on the overall testing yield in populations with epileptic encephalopathies and early-onset epilepsy have reported detection rates for clinically significant variants ranging from 7.5% to 57%. The clinical utility of genetic testing occurs primarily when there is a positive test for a known pathogenic variant. The presence of a pathogenic variant may lead to targeted medication management, avoidance of other diagnostic tests, and/or informed reproductive planning. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have presumed genetic epilepsy who receive testing for genetic variants associated with genetic epilepsies, the evidence includes prospective and retrospective cohort studies describing testing yields. Relevant outcomes are test validity, changes in reproductive decision making, symptoms, quality of life, functional outcomes, medication use, resource utilization, and treatment-related morbidity. For most genetic epilepsies, which are thought to have a complex, multifactorial basis, the association between specific genetic variants and the risk of epilepsy is uncertain. Despite a large body of literature on associations between genetic variants and epilepsies, the clinical validity of genetic testing is poorly understood. Published literature is characterized by weak and inconsistent associations, which have not been replicated independently or by meta-analyses. A number of studies have also reported associations between genetic variants and antiepileptic drug (AED) treatment response, AED adverse effect risk, epilepsy phenotype, and risk of sudden unexplained death in epilepsy (SUDEP). The largest number of these studies is related to AED pharmacogenomics, which has generally reported some association between variants in a number of genes (including SCN1A, SCN2A, ABCC2, EPHX1, CYP2C9, CYP2C19) and AED response. Similarly, genetic associations between a number of genes and AED-related adverse events have been reported. However, no empirical evidence on the clinical utility of testing for the genetic epilepsies was identified, and the changes in clinical management that might occur as a result of testing are not well-defined. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

POLICY

Genetic testing for genes associated with infantile- and early-childhood onset epilepsy syndromes in individuals with infantile- and early-childhood-onset epilepsy syndromes in which epilepsy is the core clinical symptom (see Policy Guidelines) may be considered medically necessary if positive test results may:

1. Lead to changes in medication management; AND/OR
2. Lead to changes in diagnostic testing such that alternative potentially invasive tests are avoided; AND/OR
3. Lead to changes in reproductive decision making.

Genetic testing for epilepsy is considered investigational for all other situations.

POLICY GUIDELINES

POLICY SCOPE

Included Tests/Conditions

This protocol addresses testing for epilepsy that might have a genetic etiology. The International League Against Epilepsy has classified epilepsy as having underlying genetic cause or etiology when, as best understood, the epilepsy is the direct result of a known or presumed genetic defect and seizures are the core symptom of the disorder and for which there is no structural or metabolic defect predisposing to epilepsy (Berg et al, 2010).

This protocol also addresses the rare epilepsy syndromes that present in infancy or early childhood, in which epilepsy is the core clinical symptom (e.g., Dravet syndrome, early infantile epileptic encephalopathy, generalized epilepsy with febrile seizures plus, epilepsy and intellectual disability limited to females, nocturnal frontal lobe epilepsy). Other clinical manifestations may be present in these syndromes but are generally secondary to the epilepsy itself.

Excluded Tests and Conditions

This protocol does not address testing for genetic syndromes that have a wider range of symptomatology, of which seizures may be one, such as the neurocutaneous disorders (e.g., neurofibromatosis, tuberous sclerosis) or genetic syndromes associated with cerebral malformations or abnormal cortical development, or metabolic or mitochondrial disorders. Genetic testing for these syndromes may be specifically addressed in other protocols (see Related Protocols).

Testing that is limited to genotyping of CYP450 genes is addressed separately in the Cytochrome P450 Genotype-Guided Treatment Strategy Protocol.

This protocol does not address the use of genotyping for the HLA-B*1502 allelic variant in patients of Asian ancestry prior to considering drug treatment with carbamazepine due to risks of severe dermatologic reactions. This testing is recommended by the U.S. Food and Drug Administration (FDA) labeling for carbamazepine (FDA, 2014).

This protocol also does not address testing for variants in the mitochondrial DNA polymerase gamma (POLG) gene in patients with clinically suspected mitochondrial disorders prior to initiation of therapy with valproate. Valproate’s label contains a black box warning related to increased risk of acute liver failure associated with the use of valproate in patients with POLG gene-related hereditary neurometabolic syndromes. FDA labeling states: that valproate “is contraindicated in patients known to have mitochondrial disorders caused by POLG mutations and children under two years of age who are clinically suspected of having a POLG-related disorder” (FDA, 2015).

MEDICALLY NECESSARY STATEMENT DEFINITIONS AND TESTING STRATEGY

The medically necessary statement refers to epilepsy syndromes that present in infancy or early childhood, are severe, and are characterized by epilepsy as the primary manifestation, without associated metabolic or brain structural abnormalities. As defined by the International League Against Epilepsy, these include epileptic encephalopathies, which are electroclinical syndrome associated with a high probability of encephalopathic fea-
tures that present or worsen after the onset of epilepsy. Other clinical manifestations, including developmental delay and/or intellectual disability may be present secondary to the epilepsy itself. Specific clinical syndromes based on the International League Against Epilepsy classification include:

- Dravet syndrome (also known as severe myoclonic epilepsy in infancy or polymorphic myoclonic epilepsy in infancy)
- EFMR syndrome (epilepsy limited to females with mental retardation)
- Epileptic encephalopathy with continuous spike-and-wave during sleep
- GEFS+ syndrome (generalized epilepsies with febrile seizures plus)
- Ohtahara syndrome (also known as early infantile epileptic encephalopathy with burst suppression pattern)
- Landau-Kleffner syndrome
- West syndrome
- Glucose transporter type 1 deficiency syndrome

Variants in a large number of genes have been associated with early onset epilepsies. Some of them are summarized in Table PG1.

Table PG1: Single-Genes Associated With Epileptic Syndromes

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Associated Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dravet syndrome</td>
<td>SCN1A, SCN9A, GABRA1, STXBP1, PCDH19, SCN1B, CHD2, HCN1</td>
</tr>
<tr>
<td>Epilepsy limited to females with mental retardation</td>
<td>PCDH19</td>
</tr>
<tr>
<td>Epileptic encephalopathy with continuous spike-and-wave during sleep</td>
<td>GRIN2A</td>
</tr>
<tr>
<td>Genetic epilepsy with febrile seizures plus</td>
<td>SCN1A, SCN9A</td>
</tr>
<tr>
<td>Early infantile epileptic encephalopathy with suppression burst</td>
<td>KCNQ2, SLC25A22, STXBP1, CDKL5, ARX</td>
</tr>
<tr>
<td>(Ohtahara syndrome)</td>
<td>GRIN2A</td>
</tr>
<tr>
<td>Landau-Kleffner syndrome</td>
<td>ARX, TSC1, TSC2, CDKL5, ALG13, MAGI2, STXBP1, SCN1A, SCN2A, GABA, GABRB3, DNM1</td>
</tr>
<tr>
<td>West syndrome</td>
<td>ARX, TSC1, TSC2, CDKL5, ALG13, MAGI2, STXBP1, SCN1A, SCN2A, GABA, GABRB3, DNM1</td>
</tr>
<tr>
<td>Glucose transporter type 1 deficiency syndrome</td>
<td>SLC2A1</td>
</tr>
</tbody>
</table>

Application of the Medically Necessary Policy Statement

Although there is no standard definition of epileptic encephalopathies, they are generally characterized by at least some of the following: (1) onset in early childhood (often in infancy); (2) refractory to therapy; (3) associated with developmental delay or regression; and (4) severe electroencephalogram (EEG) abnormalities. There is a challenge in defining the population appropriate for testing given that specific epileptic syndromes may be associated with different EEG abnormalities, which may change over time, and patients may present with severe seizures prior to the onset or recognition of developmental delay or regression. However, for this protocol, the medically necessary policy statement would apply for patients with:

1. Onset of seizures in early childhood (i.e., before the age of five years); AND
2. Clinically severe seizures that affect daily functioning and/or interictal EEG abnormalities; AND
3. No other clinical syndrome that would potentially better explain the patient’s symptoms.

Testing Strategy

There is clinical and genetic overlap for many of the electroclinical syndromes previously discussed. If there is suspicion for a specific syndrome based on history, EEG findings, and other test results, testing should begin with targeted variant testing for the candidate gene most likely to be involved, followed by sequential testing for
other candidate genes. In particular, if an SCN1A-associated syndrome is suspected (Dravet syndrome, GEFS+), molecular genetic testing of SCN1A with sequence analysis of the SCN1A coding region, followed by deletion and duplication analysis if a pathogenic variant is not identified, should be obtained.

Given the genetic heterogeneity of early-onset epilepsy syndromes, a testing strategy that uses a multigene panel may be considered reasonable. In these cases, panels should meet the criteria outlined in the Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders Protocol.

GENETICS NOMENCLATURE UPDATE

Human Genome Variation Society (HGVS) nomenclature is used to report information on variants found in DNA and serves as an international standard in DNA diagnostics. It is being implemented for genetic testing medical protocol updates starting in 2017 (see Table PG2). The Society’s nomenclature is recommended by the Human Variome Project, the Human Genome Organization, and by the Human Genome Variation Society itself.

The American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) standards and guidelines for interpretation of sequence variants represent expert opinion both organizations, in addition to the College of American Pathologists. These recommendations primarily apply to genetic tests used in clinical laboratories, including genotyping, single genes, panels, exomes, and genomes. Table PG3 shows the recommended standard terminology—“pathogenic,” “likely pathogenic,” “uncertain significance,” “likely benign,” and “benign”—to describe variants identified that cause Mendelian disorders.

Table PG2. Nomenclature to Report on Variants Found in DNA

<table>
<thead>
<tr>
<th>Previous</th>
<th>Updated</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutation</td>
<td>Disease-associated variant</td>
<td>Disease-associated change in the DNA sequence</td>
</tr>
<tr>
<td>Variant</td>
<td>Change in the DNA sequence</td>
<td></td>
</tr>
<tr>
<td>Familial variant</td>
<td>Disease-associated variant identified in a proband for use in subsequent targeted genetic testing in first-degree relatives</td>
<td></td>
</tr>
</tbody>
</table>

Table PG3. ACMG-AMP Standards and Guidelines for Variant Classification

<table>
<thead>
<tr>
<th>Variant Classification</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenic</td>
<td>Disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Likely pathogenic</td>
<td>Likely disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Variant of uncertain significance</td>
<td>Change in DNA sequence with uncertain effects on disease</td>
</tr>
<tr>
<td>Likely benign</td>
<td>Likely benign change in the DNA sequence</td>
</tr>
<tr>
<td>Benign</td>
<td>Benign change in the DNA sequence</td>
</tr>
</tbody>
</table>

American College of Medical Genetics and Genomics; AMP: Association for Molecular Pathology

GENETIC COUNSELING

Experts recommend formal genetic counseling for patients who are at risk for inherited disorders and who wish to undergo genetic testing. Interpreting the results of genetic tests and understanding risk factors can be difficult for some patients; genetic counseling helps individuals understand the impact of genetic testing, including the possible effects the test results could have on the individual or their family members. It should be noted that genetic counseling may alter the utilization of genetic testing substantially and may reduce inappropriate testing; further, genetic counseling should be performed by an individual with experience and expertise in genetic medicine and genetic testing methods.

BACKGROUND

EPILEPSY

Epilepsy is defined as the occurrence of two or more unprovoked seizures. It is a common neurologic disorder, with approximately 3% of the population developing the disorder over their entire lifespan.1
Classification

Epilepsy is heterogeneous in etiology and clinical expression and can be classified in a variety of ways. Most commonly, classification is done by the clinical phenotype, i.e., the type of seizures that occur. The International League Against Epilepsy (ILAE) developed the classification system that is widely used for clinical care and research purposes (see Table 1). classification of seizures can also be done on the basis of age of onset: neonatal, infancy, childhood, and adolescent/adult.

Table 1. Classification of Seizure Disorders by Type

<table>
<thead>
<tr>
<th>Seizure Disorders</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial (focal seizures)</td>
<td></td>
</tr>
<tr>
<td>Simple partial seizures (consciousness not impaired)</td>
<td></td>
</tr>
<tr>
<td>With motor symptoms</td>
<td></td>
</tr>
<tr>
<td>With somatosensory or special sensory symptoms</td>
<td></td>
</tr>
<tr>
<td>With autonomic symptoms or signs</td>
<td></td>
</tr>
<tr>
<td>With psychic symptoms (disturbance of higher cerebral function)</td>
<td></td>
</tr>
<tr>
<td>Complex partial (with impairment of consciousness)</td>
<td></td>
</tr>
<tr>
<td>Simple partial-onset followed by impairment of consciousness</td>
<td></td>
</tr>
<tr>
<td>Impairment of consciousness at outset</td>
<td></td>
</tr>
<tr>
<td>Partial seizures evolving to secondarily generalized seizures</td>
<td></td>
</tr>
<tr>
<td>Generalized seizures</td>
<td></td>
</tr>
<tr>
<td>Nonconvulsive (absence)</td>
<td></td>
</tr>
<tr>
<td>Convulsive</td>
<td></td>
</tr>
<tr>
<td>Unclassified seizures</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Alternative Classifications

<table>
<thead>
<tr>
<th>Classification</th>
<th>Condition Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic epilepsies</td>
<td>Conditions in which the seizures are a direct result of a known or presumed genetic defect(s). Genetic epilepsies are characterized by recurrent unprovoked seizures in patients who do not have demonstrable brain lesions or metabolic abnormalities. In addition, seizures are the core symptom of the disorder, and other symptomatology is not present, except as a direct result of seizures. This is differentiated from genetically determined conditions in which seizures are part of a larger syndrome, such as tuberous sclerosis, fragile X syndrome, or Rett syndrome.</td>
</tr>
<tr>
<td>Structural/metabolic</td>
<td>Conditions having a distinct structural or metabolic condition that increases the likelihood of seizures. Structural conditions include a variety of central nervous system abnormalities such as stroke, tumor or trauma, and metabolic conditions include a variety of encephalopathic abnormalities that predispose to seizures. These conditions may have a genetic etiology, but the genetic defect is associated with a separate disorder that predisposes to seizures.</td>
</tr>
<tr>
<td>Unknown cause</td>
<td>Conditions for which the underlying etiology for the seizures cannot be determined and may include both genetic and nongenetic causes.</td>
</tr>
</tbody>
</table>

For this protocol, the ILAE classification for genetic epilepsies is most useful. The review focuses on the category of genetic epilepsies in which seizures are the primary clinical manifestation. This category does not include syndromes that have multiple clinical manifestations, of which seizures may be one. Examples of syndromes that include seizures are Rett syndrome and tuberous sclerosis. Genetic testing for these syndromes will not be assessed herein but may be included in separate reviews that specifically address genetic testing for that syndrome.
Genetic epilepsies can be further broken down by type of seizures. For example, genetic generalized epilepsy refers to patients who have convulsive (grand mal) seizures, while genetic absence epilepsy refers to patients with nonconvulsive (absence) seizures. The disorders are also sometimes classified by the age of onset.

The category of genetic epilepsies includes a number of rare epilepsy syndromes that present in infancy or early childhood. These syndromes are characterized by epilepsy as the primary manifestation, without associated metabolic or brain structural abnormalities. They are often severe and sometimes refractory to medication treatment. They may involve other clinical manifestations such as developmental delay and/or intellectual disability, which in many cases are thought to be caused by frequent uncontrolled seizures. In these cases, the epileptic syndrome may be classified as an epileptic encephalopathy, which is described by ILAE as disorders in which the epileptic activity itself may contribute to severe cognitive and behavioral impairments above and beyond what might be expected from the underlying pathology alone and that these can worsen over time. A partial list of severe early-onset epilepsy syndromes is as follows:

- Dravet syndrome; also known as severe myoclonic epilepsy in infancy or polymorphic myoclonic epilepsy in infancy
- EFMR syndrome (epilepsy limited to females with mental retardation)
- Nocturnal frontal lobe epilepsy
- GEFS+ syndrome (generalized epilepsies with febrile seizures plus)
- EIEE syndrome (early infantile epileptic encephalopathy with burst suppression pattern)
- West syndrome
- Ohtahara syndrome.

Dravet syndrome falls on a spectrum of SCN1A-related seizure disorders, which includes febrile seizures at the mild end to Dravet syndrome and intractable childhood epilepsy with generalized tonic-clonic seizures at the severe end. The spectrum may be associated with multiple seizure phenotypes, with a broad spectrum of severity; more severe seizure disorders may be associated with cognitive impairment, or deterioration. Ohtahara syndrome is a severe early-onset epilepsy syndrome characterized by intractable tonic spasms, other seizures, interictal electroencephalography abnormalities, and developmental delay. It may be secondary to structural abnormalities but has been associated with variants in the STXBP1 gene in rare cases. West syndrome is an early-onset seizure disorder associated with infantile spasms and the characteristic electroencephalography finding of hypsarrhythmia. Other seizure disorders presenting early in childhood may have a genetic component but are characterized by a more benign course, including benign familial neonatal seizures and benign familial infantile seizures.

GENETIC ETIOLOGY

Most genetic epilepsies are primarily believed to involve multifactorial inheritance patterns. This follows the concept of a threshold effect, in which any particular genetic defect may increase the risk of epilepsy but is not by itself causative. A combination of risk-associated genes, together with environmental factors, determines whether the clinical phenotype of epilepsy occurs. In this model, individual genes that increase the susceptibility to epilepsy have a relatively weak impact. Multiple genetic defects, and/or a particular combination of genes, probably increase the risk by a greater amount. However, it is not well-understood how many abnormal genes are required to exceed the threshold to cause clinical epilepsy, nor is it understood which combination of genes may increase the risk more than others.

Early-onset epilepsy syndromes may be single-gene disorders. Because of the small amount of research available, the evidence base for these rare syndromes is incomplete, and new variants are currently being frequently discovered.
Some of the most common genes associated with genetic epileptic syndromes are listed in Table 3.

Table 3. Selected Genes Most Commonly Associated With Genetic Epilepsy

<table>
<thead>
<tr>
<th>Genes</th>
<th>Physiologic Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCNQ2</td>
<td>Potassium channel</td>
</tr>
<tr>
<td>KCNQ3</td>
<td>Potassium channel</td>
</tr>
<tr>
<td>SCN1A</td>
<td>Sodium channel α-subunit</td>
</tr>
<tr>
<td>SCN2A</td>
<td>Sodium channel α-subunit</td>
</tr>
<tr>
<td>SCN1B</td>
<td>Sodium channel β-subunit</td>
</tr>
<tr>
<td>GABRG2</td>
<td>γ-aminobutyrate A-type subunit</td>
</tr>
<tr>
<td>GABRRRA1</td>
<td>γ-aminobutyrate A-type subunit</td>
</tr>
<tr>
<td>GABRD</td>
<td>γ-aminobutyrate subunit</td>
</tr>
<tr>
<td>CHRNA2</td>
<td>Acetylcholine receptor α2 subunit</td>
</tr>
<tr>
<td>CHRNA4</td>
<td>Acetylcholine receptor α4 subunit</td>
</tr>
<tr>
<td>CHRNB2</td>
<td>Acetylcholine receptor β2 subunit</td>
</tr>
<tr>
<td>STXBP1</td>
<td>Synaptic vesicle release</td>
</tr>
<tr>
<td>ARX</td>
<td>Homeobox gene</td>
</tr>
<tr>
<td>PCDH19</td>
<td>Protocadherin cell-cell adhesion</td>
</tr>
<tr>
<td>EFHC1</td>
<td>Calcium homeostasis</td>
</tr>
<tr>
<td>CACNB4</td>
<td>Calcium channel subunit</td>
</tr>
<tr>
<td>CLCN2</td>
<td>Chloride channel</td>
</tr>
<tr>
<td>LGI1</td>
<td>G-protein component</td>
</tr>
</tbody>
</table>

Adapted from Williams and Battaglia (2013).4

For the severe early epilepsy syndromes, the disorders most frequently reported to be associated with single-gene variants include generalized epilepsies with febrile seizures plus syndrome (associated with SCN1A, SCN1B, and GABRG2 variants), Dravet syndrome (associated with SCN1A variants, possibly modified by SCN9A variants), and epilepsy and intellectual disability limited to females (associated with PCDH19 variants). Ohtahara syndrome has been associated with variants in STXBP1 in cases where patients have no structural or metabolic abnormalities. West syndrome is often associated with chromosomal abnormalities or tuberous sclerosis or may be secondary to an identifiable infectious or metabolic cause, but when there is no underlying cause identified, it is thought to be due to a multifactorial genetic predisposition.9

Targeted testing for individual genes is available. Several commercial epilepsy genetic panels are also available. The number of genes included in the tests varies widely, from about 50 to over 450. The panels frequently include genes for other disorders such as neural tube defects, lysosomal storage disorders, cardiac channelopathies, congenital disorders of glycosylation, metabolic disorders, neurologic syndromes, and multisystemic genetic syndromes. Some panels are designed to be comprehensive while other panels target specific subtypes of epilepsy. Chambers et al (2016) reviewed comprehensive epilepsy panels from 7, U.S.-based clinical laboratories and found that between 1% and 4% of panel contents were genes not known to be associated with primary epilepsy.10 Between 1% and 70% of the genes included on an individual panel were not on any other panel.

Treatment

The condition is generally chronic, requiring treatment with one or more medications to adequately control symptoms. Seizures can be controlled by antiepileptic medications in most cases, but some patients are resistant to medications, and further options such as surgery, vagus nerve stimulation, and/or the ketogenic diet can be used.11

PHARMACOGENOMICS

Another area of interest for epilepsy is the pharmacogenomics of antiepileptic medications. There are a wide variety of these medications, from numerous different classes. The choice of medications and the combinations of medications for patients who require treatment with more than one agent is complex. Approximately one-
third of patients are considered refractory to medications, defined as inadequate control of symptoms with a single medication. These patients often require escalating doses and/or combinations of different medications. At present, selection of agents is driven by the clinical phenotype of seizures but has a large trial-and-error component in many refractory cases. The current focus of epilepsy pharmacogenomics is in detecting genetic markers that identify patients likely to be refractory to the most common medications. This may lead to directed treatment that will result in a more efficient process for medication selection, and potentially more effective control of symptoms.

Of note, genotyping for the HLA-B*1502 allelic variant in patients of Asian ancestry, prior to considering drug treatment with carbamazepine due to risks of severe dermatologic reactions, is recommended by the U.S. Food and Drug Administration (FDA) labeling for carbamazepine.

REGULATORY STATUS

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). Commercially available genetic tests for epilepsy are available under the auspices of the CLIA. Laboratories that offer laboratory-developed tests must be licensed by the CLIA for high-complexity testing. To date, the FDA has chosen not to require any regulatory review of this test.

Services that are the subject of a clinical trial do not meet our Technology Assessment and Medically Necessary Services Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment and Medically Necessary Services Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

REFERENCES

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

8. Helbig I, Lowenstein DH. Genetics of the epilepsies: where are we and where are we going?. Curr Opin Neurol. Apr 2013;26(2):179-85. PMID 23429546
63. Lin CH, Chou IC, Hong SY. Genetic factors and the risk of drug-resistant epilepsy in young children with epilepsy and neurodevelopmental disability: A prospective study and updated meta-analysis. Medicine (Baltimore). Mar 26 2021;100(12):e25277. PMID 33761731

