Genetic Testing for Hereditary Breast and Ovarian Cancer Syndrome

(20402, 204126)

<table>
<thead>
<tr>
<th>Medical Benefit</th>
<th>Effective Date: 08/01/18</th>
<th>Next Review Date: 07/19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preauthorization</td>
<td>Yes</td>
<td>Review Dates: 02/07, 01/08, 11/08, 09/09, 05/10, 05/11, 01/12, 01/13, 01/14, 05/14, 05/15, 05/16, 09/16, 03/17, 09/17, 07/18</td>
</tr>
</tbody>
</table>

Preauthorization is required for services which may be medically necessary under this protocol. For tests that this protocol considers investigational, if the physician feels the service is medically necessary, preauthorization is recommended.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

Populations

- **Individuals:** With cancer, or a personal or family cancer history and criteria suggesting a risk of hereditary breast/ovarian cancer syndrome
- **Interventions of interest** are:
 - Genetic testing for a BRCA1 or BRCA2 mutation
- **Comparators of interest** are:
 - Standard of care without genetic testing
 - Relevant outcomes include:
 - Overall survival
 - Disease-specific survival
 - Test accuracy
 - Test validity
 - Quality of life

- **Individuals:** With risk of hereditary breast/ovarian cancer
- **Interventions of interest** are:
 - Genetic testing for a PALB2 variant
- **Comparators of interest** are:
 - No genetic testing for PALB2 variants
 - Relevant outcomes include:
 - Overall survival
 - Disease-specific survival
 - Test accuracy
 - Test validity

- **Individuals:** With risk of hereditary breast/ovarian cancer
- **Interventions of interest** are:
 - Genetic testing for CHEK2 variant
- **Comparators of interest** are:
 - No genetic testing for CHEK2 variants
 - Relevant outcomes include:
 - Overall survival
 - Disease-specific survival
 - Test accuracy
 - Test validity

- **Individuals:** With risk of hereditary breast/ovarian cancer
- **Interventions of interest** are:
 - Genetic testing for an ATM variant
- **Comparators of interest** are:
 - No genetic testing for an ATM variant
 - Relevant outcomes include:
 - Overall survival
 - Disease-specific survival
 - Test accuracy
 - Test validity

DESCRIPTION

Hereditary breast and ovarian cancer (HBOC) syndrome describes the familial cancer syndromes related to variants in the BRCA genes (BRCA1 located on chromosome 17q21, BRCA2 located on chromosome 13q12-13). Families with HBOC syndrome have an increased susceptibility to the following types of cancer: breast cancer occurring at a young age, bilateral breast cancer, male breast cancer, ovarian cancer (at any age), cancer of the...
fallopian tube, primary peritoneal cancer, prostate cancer, pancreatic cancer, gastrointestinal cancers, melanoma, and laryngeal cancer.

It is estimated that 3% to 5% of women presenting for assessment for hereditary breast/ovarian cancer risk have a variant in a gene that moderately increases the risk of cancer. PALB2, CHEK2, and ATM variants are considered to be of moderate penetrance. Carriers of PALB2 have an approximately two- to 13-fold increased risk of developing breast cancer compared with the general population, and risk for CHEK2 and ATM carriers is increased approximately two- to four-fold. Risk estimates may be higher in patients with a family history of breast cancer or a family history of a specific variant.

SUMMARY OF EVIDENCE

For individuals who have cancer or a personal or family cancer history and meet criteria suggesting a risk of HBOC syndrome who receive genetic testing for a BRCA1 or BRCA2 variant, the evidence includes a TEC Assessment and studies of variant prevalence and cancer risk. Relevant outcomes are overall survival, disease-specific survival, test accuracy and validity, and quality of life. The accuracy of variant testing has been shown to be high. Studies of lifetime risk of cancer for carriers of a BRCA variant have shown a risk as high as 85%. Knowledge of BRCA variant status in individuals at risk of a BRCA variant may impact health care decisions to reduce risk, including intensive surveillance, chemoprevention, and/or prophylactic intervention. In individuals with BRCA1 or BRCA2 variants, prophylactic mastectomy and oophorectomy have been found to significantly increase disease-specific survival and overall survival. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals with risk of hereditary breast/ovarian cancer who receive genetic testing for a PALB2 variant, the evidence includes studies of analytic and clinical validity and studies of breast cancer risk, including a meta-analysis. Relevant outcomes are overall survival, disease-specific survival, and test accuracy and validity. Evidence supporting clinical validity was obtained from numerous studies reporting relative risks or odds ratios (two studies estimated penetrance). Study designs included family segregation, kin-cohort, family-based case-control, and population-based case-control. The number of pathogenic variants identified in studies varied from one (founder mutations) to 48. Relative risks for breast cancer associated with a PALB2 variant ranged from 2.3 to 13.4, with the two family-based studies reporting the lowest values. Evidence on preventive interventions in women with PALB2 variants is indirect, relying on studies of high-risk women and BRCA carriers. These interventions include screening with magnetic resonance imaging, chemoprevention, and risk reduction mastectomy. Given the penetrance of PALB2 variants, the outcomes following bilateral and contralateral prophylactic mastectomy examined in women with a family history consistent with hereditary breast cancer (including BRCA1 and BRCA2 carriers) can be applied to women with PALB2 variants—with the benefit-to-risk balance affected by penetrance. In women at high risk of hereditary breast cancer who would consider preventive interventions, identifying a PALB2 variant provides a more precise estimated risk of developing breast cancer compared with family history alone and can offer women a more accurate understanding of benefits and potential harms of any intervention. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals with risk of hereditary breast/ovarian cancer who receive genetic testing for a CHEK2 variant, the evidence includes studies of analytic validity, variant prevalence, and studies of breast cancer risk. Relevant outcomes are overall survival, disease-specific survival, and test accuracy and validity. The available studies on clinical validity have demonstrated that CHEK2 variants are of moderate penetrance, with lower relative risks for breast cancer than PALB2, and confer a risk of breast cancer two to four times that of the general population. Direct evidence for the clinical utility of genetic testing for CHEK2 variants in individuals with risk of hereditary breast/ovarian cancer was not identified. In contrast to the case of PALB2, where the penetrance approaches
that of a BRCA variant, there is unlikely to be a similar benefit-to-risk calculus for preventive interventions in women with a CHEK2 variant. It is unclear that the relative risk associated with the moderate penetrance variants other than PALB2 would increase risk enough beyond that already conferred by familial risk to change screening behavior. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with risk of hereditary breast/ovarian cancer who receive genetic testing for an ATM variant, the evidence includes studies of analytic validity, variant prevalence, and studies of breast cancer risk. Relevant outcomes are overall survival, disease-specific survival, and test accuracy and validity. The available studies on clinical validity have demonstrated that ATM variants are of moderate penetrance, with lower relative risks for breast cancer than PALB2; moreover, ATM variants confer a risk of breast cancer two to four times that of the general population. Direct evidence for the clinical utility of genetic testing for ATM variants in individuals with risk of hereditary breast/ovarian cancer was not identified. In contrast to the case of PALB2, where the penetrance approaches that of a BRCA variant, there is unlikely to be a similar benefit-to-risk calculus for preventive interventions in women with an ATM variant. It is unclear that the relative risk associated with the moderate penetrance variants—other than PALB2—would increase risk enough beyond that already conferred by familial risk to change screening behavior. The evidence is insufficient to determine the effects of the technology on health outcomes.

For purposes of this protocol close blood relative is defined as 1st-, 2nd-, or 3rd-degree relatives on the same side of the family. 1st-degree relatives are parents, siblings, and children. 2nd-degree relatives are grandparents, aunts, uncles, nieces, nephews, grandchildren, and half-siblings. 3rd-degree relatives are great-grandparents, great-aunts, great-uncles, great-grandchildren, and first cousins.

POLICY
BRCA1, BRCA2, BART, PALB2

FOR AN INDIVIDUAL FROM A FAMILY WITH A KNOWN DELETERIOUS BRCA1 OR BRCA2 VARIANT OR PALB2 VARIANT genetic testing for that specific BRCA1 or BRCA2 variant or PALB2 variant may be considered medically necessary.

FOR AN INDIVIDUAL WITH PERSONAL HISTORY OF BREAST CANCER genetic testing for a BRCA1 or BRCA2 variant (including large genomic rearrangement testing, i.e., BART) or a PALB2 variant may be considered medically necessary when ANY of the following criteria are met:

• breast cancer prior to 45 years of age; OR
• two breast cancers prior to 50 years of age; OR
• at age 50 years or younger and one or more close relative with breast cancer, pancreatic or prostate cancer (Gleason ≥ 7 or metastatic); OR
• at age 50 years or younger and unknown or limited family history; OR
• triple negative (estrogen receptor-negative, progesterone receptor-negative, human epidermal growth factor receptor 2-negative) breast cancer at 60 years of age or younger; OR
• one or more close blood relative with breast cancer diagnosed at 50 years of age or younger; OR
• multiple primary breast cancers or bilateral breast cancer; OR
• a male with breast cancer; OR
• one or more close blood male relative with breast cancer; OR
• one or more close relatives with ovarian carcinoma (including fallopian tube and primary peritoneal cancers); OR
• two or more close blood relatives with breast, ovarian, fallopian tube, primary peritoneal or prostate cancer (Gleason score > 7 or metastatic) or pancreatic cancer; OR
• belongs to a population at risk for specific mutations due to ethnic background (e.g., Ashkenazi Jewish, Icelandic, Swedish, Hungarian or Dutch descent).

FOR AN INDIVIDUAL WITH A PERSONAL HISTORY OF CANCER (OTHER THAN BREAST CANCER) genetic testing for BRCA1 and BRCA2 variants or a PALB2 variant may be considered medically necessary for testing an individual when ANY of the following criteria are met:
• ovarian, fallopian tube or primary peritoneal CA; OR
• pancreatic cancer and Ashkenazi Jewish ancestry; OR
• pancreatic cancer or prostate cancer (Gleason score > 7 or metastatic) and one or more close blood relatives with breast cancer, ovarian, fallopian tube, primary peritoneal or pancreatic cancer or prostate cancer (Gleason score > 7 or metastatic) OR two close blood relatives with breast, pancreatic or prostate CA or metastatic prostate cancer; OR
• epithelial ovarian cancer; OR
• metastatic prostate cancer.

FOR AN INDIVIDUAL WITH NO PERSONAL HISTORY OF CANCER genetic testing for BRCA1 and BRCA2 variants or a PALB2 variant may be considered medically necessary when ANY of the following criteria are met:
• family history of three or more close blood relatives with breast (at least one of which has breast cancer prior to age 50), ovarian, fallopian tube or primary peritoneal cancer; OR
• first or second degree blood relative meeting any of the above criteria listed for patients with cancer (any type); OR
• third degree blood relative who has breast cancer and/or ovarian carcinoma (including fallopian tube and primary peritoneal cancers) AND who has two or more close blood relatives with breast cancer (at least one diagnosed at 50 years or younger) and /or ovarian, fallopian tube or primary peritoneal cancer.

Genetic testing in minors for BRCA1 and BRCA2 variants is investigational.

BRCA and BART testing as a screening test for cancer in women in the general population are investigational.

BRCA and BART testing for unaffected members of high-risk populations (e.g., Ashkenazi Jewish descendant) who have no relatives with a history of breast, ovarian, fallopian tube or primary peritoneal cancer at any age is investigational.

PALB2, PTEN, STK11, CDH1

FOR AN INDIVIDUAL WITH A PERSONAL HISTORY OF CANCER OR CLOSE BLOOD RELATIVE WITH CANCER (OTHER THAN BREAST CANCER) genetic testing for PALB2, PTEN, STK11, and or CDH1 would be considered medically necessary with three or more occurrences of any of the following cancers:
• Pancreatic cancer
• Prostate cancer (Gleason > 7)
• Brain tumor
• Kidney cancer
• Endometrial cancer
• Thyroid cancer
• Hamartomatous polyps of the GI tract
• Diffuse gastric cancer

PTEN, STK11, CHD1

FOR AN INDIVIDUAL FROM A FAMILY WITH A KNOWN VARIANT in PTEN, STK11, and/or CDH1, genetic testing for these genes may be considered medically necessary.

CHEK2 and ATM

Testing for CHEK2 and/or ATM genetic abnormalities (mutations, deletions, etc.) is investigational.

TESTING FOR ALL VARIANTS

Unless criteria above are met, genetic testing for variants in these genes (BRCA1, BRCA2, PALB2, PTEN, STK11, CDH1) is considered investigational.

Genetic testing using multi-gene panels and NGS that tests for more than those genes considered medically necessary in the above policy statements (BRCA1, BRCA2, PALB2, PTEN, STK11, CDH1) is considered investigational.

POLICY GUIDELINES

This testing is necessary only once per lifetime.

GENETIC COUNSELING

Genetic counseling is primarily aimed at patients who are at risk for inherited disorders, and experts recommend formal genetic counseling in most cases when genetic testing for an inherited condition is considered. The interpretation of the results of genetic tests and the understanding of risk factors can be very difficult and complex. Therefore, genetic counseling will assist individuals in understanding the possible benefits and harms of genetic testing, including the possible impact of the information on the individual’s family. Genetic counseling may alter the utilization of genetic testing substantially and may reduce inappropriate testing. Genetic counseling should be performed by an individual with experience and expertise in genetic medicine and genetic testing methods.

HEREDITARY BREAST AND OVARIAN CANCER

Current U.S. Preventive Services Task Force (USPSTF) guidelines recommend screening women with any family history of breast, ovarian, tubal, or peritoneal cancer. Women with positive screening results should receive genetic counseling and, if indicated after counseling, BRCA testing. (Grade B Recommendation)

Recommended screening tools designed to identify a family history that may be associated with an increased risk for potentially harmful variants in BRCA1 or BRCA2 are:

• Ontario Family History Assessment Tool (FHAT)
• Manchester Scoring System
• Referral Screening Tool (RST)
• Pedigree Assessment Tool (PAT)
• Family History Screen (FHS-7)

A Recommended Testing Strategy

• In patients with known familial BRCA mutation:
 o Targeted testing for the specific, known mutation only.

• In patients with unknown familial BRCA mutation:
 o If more than one family member is affected with cancers highly associated with a particular inherited cancer susceptibility syndrome, consider testing first a family member most likely to carry a mutation, such as the youngest age at diagnosis, bilateral disease, multiple primary cancers, or other cancers associated with the syndrome, or most closely related to the proband/patient.
 o If no living family member with breast or ovarian cancer exists, NCCN suggests testing first- or second-degree family members affected with a different cancer type that is thought to be related to deleterious BRCA1 or BRCA2 mutations (e.g., prostate cancer, pancreatic cancer, and melanoma).

• If no familial mutation can be identified, possible testing strategies are:
 o Full sequencing followed by testing for common large genomic rearrangements (deletions/duplications), only if sequencing detects no mutation (negative result).
 o Alternatively, simultaneous full sequencing and testing for common large genomic rearrangements (also known as comprehensive BRCA testing; see Comprehensive Mutation Analysis, below) may be performed as is recommended by NCCN.
 o If following full sequencing and testing for common large genomic rearrangements is negative, testing for uncommon large genomic rearrangements (e.g., Myriad’s BART) may be done.

• If of Ashkenazi Jewish descent:
 o In Ashkenazi Jewish patients, testing for founder-specific mutation(s) should be performed first. Comprehensive genetic testing may be considered if ancestry also includes non-Ashkenazi Jewish relatives or if other HBOC criteria are met.
 o In members of known Ashkenazi Jewish descent, NCCN recommends testing for the three known founder mutations (185delAG and 5182insC in BRCA1; 6174delT in BRCA2) first.

• If testing is negative for founder mutations, comprehensive genetic testing may be considered (see Comprehensive Variant Analysis, below).

Comprehensive Variant Analysis

Comprehensive variant analysis currently includes sequencing the coding regions and intron and exon splice sites, as well as tests to detect common large deletions and rearrangements that can be missed with sequence analysis alone. In addition, before August 2006, testing for large deletions and rearrangements was not performed, thus some patients with familial breast cancer who had negative BRCA testing before this time may consider repeat testing for the rearrangements.

High-Risk Ethnic Groups

Testing in eligible individuals who belong to ethnic populations in which there are well-characterized founder sequence variants should begin with tests specifically for these variants. For example, founder mutations account for approximately three quarters of the BRCA sequence variants found in Ashkenazi Jewish populations. When testing for founder mutations is negative, comprehensive variant analysis should then be performed.
Testing Unaffected Individuals

In unaffected family members of potential BRCA sequence variant families, most test results will be negative and uninformative. Therefore, it is strongly recommended that an affected family member be tested first whenever possible to adequately interpret the test. Should a BRCA variant be found in an affected family member(s), DNA from an unaffected family member can be tested specifically for the same variant of the affected family member without having to sequence the entire gene. Interpreting test results for an unaffected family member without knowing the genetic status of the family may be possible in the case of a positive result for an established disease-associated variant but leads to difficulties in interpreting negative test results (uninformative negative) or variants of uncertain significance because the possibility of a causative BRCA variant is not ruled out.

Testing Minors

The use of genetic testing for BRCA variants has limited or no clinical utility in minors. This is because there is no change in management for minors as a result of knowledge of the presence or absence of a deleterious variant. In addition, there are potential harms related to stigmatization and discrimination.

Prostate Cancer

Patients with BRCA variants have an increased risk of prostate cancer, and patients with known BRCA variants may therefore consider more aggressive screening approaches for prostate cancer. However, the presence of prostate cancer in an individual, or in a family, is not itself felt to be sufficient justification for BRCA testing.

CRITERIA FOR GENETIC RISK EVALUATION

Tables PG1 and PG2 provide risk criteria for individuals with no history or breast cancer and for those with a breast cancer.

Table PG1. Criteria for Genetic Risk Evaluation of an Individual Without a History of Breast Cancer

<table>
<thead>
<tr>
<th>Individual Without a History of Breast Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A close relative with any of the following:”</td>
</tr>
<tr>
<td>- A known sequence variant in a cancer susceptibility gene within the family</td>
</tr>
<tr>
<td>- ≥ two breast cancer primaries in a single individual</td>
</tr>
<tr>
<td>- ≥ two individuals with breast cancer primaries on the same side of family with at least one diagnosed ≤ 50 years</td>
</tr>
<tr>
<td>Ovarian cancer</td>
</tr>
<tr>
<td>Male breast cancer</td>
</tr>
<tr>
<td>First- or second-degree relative with breast cancer ≤ 45 years</td>
</tr>
<tr>
<td>- Family history of three or more of the following (especially if early onset and can include multiple primary cancers in same individual): breast, pancreatic cancer, prostate cancer (Gleason score ≥ 7), melanoma, sarcoma, adrenocortical carcinoma, brain tumors, leukemia, diffuse gastric cancer, colon cancer, endometrial cancer, thyroid cancer, kidney cancer, dermatologic manifestations, and/or macrocephaly, hamartomatous polyps of GI tract”</td>
</tr>
</tbody>
</table>

Table 2. NCCN Criteria for Genetic Risk Evaluation of an Individual With Breast Cancer

<table>
<thead>
<tr>
<th>Individual With Breast Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A known sequence variant in a cancer susceptibility gene within the family:”</td>
</tr>
<tr>
<td>- breast cancer ≤ 50 years</td>
</tr>
<tr>
<td>- Triple negative (ER-, PR-, HER2-) breast cancer diagnosed ≤ 60 years</td>
</tr>
<tr>
<td>- Two breast cancer primaries in a single individual</td>
</tr>
<tr>
<td>- Breast cancer at any age, and</td>
</tr>
<tr>
<td>- ≥ 1 close blood relative with breast cancer ≤ 50 years, or</td>
</tr>
<tr>
<td>- ≥ 1 close blood relative with invasive ovarian cancer at any age, or</td>
</tr>
<tr>
<td>- ≥ 2 close blood relatives with breast cancer, prostate cancer (Gleason score ≥ 7 or metastatic) and/or pancreatic cancer at any age, or</td>
</tr>
</tbody>
</table>

Individual With Breast Cancer

<table>
<thead>
<tr>
<th>From a population at increased risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male breast cancer</td>
</tr>
<tr>
<td>An individual of Ashkenazi Jewish descent with breast, ovarian, or pancreatic cancer at any age</td>
</tr>
<tr>
<td>An individual with a personal and/or family history of three or more of the following (especially if early onset and can include multiple primary cancers in same individual): breast, pancreatic cancer, prostate cancer (Gleason score ≥ 7), melanoma, sarcoma, adrenocortical carcinoma, brain tumors, leukemia, diffuse gastric cancer, colon cancer, endometrial cancer, thyroid cancer, kidney cancer, dermatologic manifestations, and/or macrocephaly, hamartomatous polyps of gastrointestinal (GI) tract.</td>
</tr>
<tr>
<td>An individual with an ovarian cancer</td>
</tr>
</tbody>
</table>

BACKGROUND

BREAST CANCER AND GENETICS

In 2016, researchers anticipated breast cancer would be diagnosed in 252,710 women and 40,610 would die from the disease; a woman’s lifetime risk is 12.4%. Most breast cancers, however, are sporadic (70% to 75%), occurring in women without a family history of the disease. Familial cancers (15% to 25%) aggregate within families but lack clearly discernable patterns of inheritance and are likely polygenic. Hereditary cancers have discernable inheritance patterns, often occur at younger ages, may be bilateral, and comprise between 5% and 10% of breast cancers. Pathogenic BRCA1 and BRCA2 variants appear responsible for 20% to 25% of hereditary breast cancers, while small proportions are attributed to pathogenic variants in other highly penetrant genes (e.g., TP53, CDH1, PTEN, STK11).

HEREDITARY BREAST AND OVARIAN CANCER

Several genetic syndromes with an autosomal dominant pattern of inheritance that feature breast cancer have been identified. Of these, HBOC and some cases of hereditary site-specific breast cancer have in common causative variants in BRCA (breast cancer susceptibility) genes. Families suspected of having HBOC syndrome are characterized by an increased susceptibility to breast cancer occurring at a young age, bilateral breast cancer, male breast cancer, ovarian cancer at any age, as well as cancer of the fallopian tube and primary peritoneal cancer. Other cancers, such as prostate cancer, pancreatic cancer, gastrointestinal cancers, melanoma, and laryngeal cancer, occur more frequently in HBOC families. Hereditary site-specific breast cancer families are characterized by early onset breast cancer with or without male cases, but without ovarian cancer. For this protocol, we refer collectively to both as hereditary breast and/or ovarian cancer.

Germline mutations in the BRCA1 and BRCA2 genes are responsible for the cancer susceptibility in most HBOC families, especially if ovarian cancer or male breast cancer are features. However, in site-specific cancer, BRCA variants are responsible only for a proportion of affected families. BRCA gene variants are inherited in an autosomal dominant fashion through either the maternal or paternal lineage. It is possible to test for abnormalities in BRCA1 and BRCA2 genes to identify the specific variant in cancer cases and to identify family members at increased cancer risk. Family members without existing cancer who are found to have BRCA variants can consider preventive interventions for reducing risk and mortality.

PENETRANCE OF PATHOGENIC VARIANTS

Penetrance is the risk conferred by a pathogenic variant, or the proportion of individuals with the variant expected to develop cancer. Variant penetrance is considered high, moderate, or low according to lifetime risk: high (> 50%), moderate (20% to 50%), and low (< 20%) (corresponding relative risks of approximately ≥ 5, 1.5 to
5, and < 1.5). Variants in only a few breast cancer-susceptibility genes (BRCA1 and BRCA2 [hereditary breast/ovarian cancer syndrome], TP53 [Li-Fraumeni syndrome], PTEN [Cowden syndrome], CDH1 [hereditary diffuse gastric cancer], STK11 [Peutz-Jeghers syndrome]) are considered highly penetrant. For example, a woman with a BRCA1 or BRCA2 variant has roughly a 75% lifetime risk of developing breast cancer and a relative risk of 11 to 12 compared with the general population. Penetrance can be modified by environmental factors and by family history, which is a particularly important modifier for low- and moderate-penetrance genes. In addition, specific pathogenic variants within a gene may confer somewhat different risks.

DETERMINING VARIANT PATHOGENICITY

Determining the pathogenicity of variants in a cancer-susceptibility gene most commonly detected (e.g., founder sequence variants) is generally straightforward because associations are repeatedly observed. For uncommonly identified variants, such as those found in a few individuals or families, defining pathogenicity can be more difficult. For example, predicting the pathogenicity of previously unidentified variants typically requires in silico (computational) analysis predicting protein structure/function, evolutionary conservation, and splice site prediction. The approach to defining pathogenicity is clearly outlined in standards and reporting guidelines. Still, distinctions between a variant of uncertain significance and a pathogenic one from different laboratories may not always be identical.

GENES ASSOCIATED WITH A MODERATE PENETRANCE OF BREAST CANCER

PALB2 Gene

The PALB2 gene (partner and localizer of BRCA2) encodes for a protein first described in 2006. The gene is located at 16p12.2 and has 13 exons. The PALB2 protein assists BRCA2 in DNA repair and tumor suppression. Heterozygous pathogenic PALB2 variants increase the risk of developing breast and pancreatic cancers; homozygous variants are found in Fanconi anemia. Most pathogenic PALB2 variants are truncating frameshift or stop codons, and are found throughout the gene. Pathogenic PALB2 variants are uncommon in unselected populations and prevalence varies by ethnicity and family history. For example, Antoniou et al (2014) assumed a prevalence of eight per 10,000 in the general population when modeling breast cancer risks. Variants are more prevalent in ethnic populations where founder variants have persisted (e.g., Finns, French Canadians, Poles), while infrequently found in others (e.g., in Ashkenazi Jews). In women with a family history of breast cancer, the prevalence of pathogenic PALB2 variants ranges between 0.9% and 3.9%, or substantially higher than in an unselected general population. Depending on population prevalence, PALB2 may be responsible for as much as 2.4% of hereditary breast cancers; and in populations with founder variants cause 0.5% to 1% of all breast cancers.

Protein-truncating PALB2 variants appear responsible for some cases of familial pancreatic cancers, but the proportion is unclear. Moreover, it remains uncertain whether screening asymptomatic high-risk patients for pancreatic cancer can improve health outcomes.

CHEK2 Gene

The CHEK2 (checkpoint kinase 2) gene is activated in response to DNA double-strand breakage and plays a role in cell-cycle control, DNA repair, and apoptosis.

In 2002, a single recurrent truncating mutation in the CHEK2 gene (c.1100delC) was first reported as a cause of breast cancer, and studies have since confirmed this. The incidence of CHEK2 variants varies widely among populations. It is most prevalent in Eastern and Northern Europe, where the population frequency of the c.1100delC allele ranges from 0.5% to 1.4%; the allele is less frequent in North America and virtually absent in Spain and India.
Although most data for truncating CHEK2 variants are limited to the c.1100delC variant, three other founder variants of CHEK2 (IVS2+1G>A, del5395, I157T) have been associated with breast cancer in Eastern Europe. IVS2+1G>A and del5395 are protein-truncating variants, and I157T is a missense variant. The truncating variants are associated with breast cancer in the Slavic populations of Poland, Belarus, Russia, and the Czech Republic. The I157T variant has a wider geographic distribution, and has been reported to be associated with breast cancer in Poland, Finland, Germany, and Belarus.12

ATM Gene

ATM (ataxia-telangiectasia [AT] mutated), located on chromosome 11q22.3, is associated with the autosomal recessive condition AT. This condition is characterized by progressive cerebellar ataxia with onset between the ages of one and four years, telangiectasias of the conjunctivae, oculomotor apraxia, immune defects, and cancer predisposition. Female ATM heterozygote carriers have a risk of breast cancer about twice as high as that of the general population, but do not appear to have an elevated ovarian cancer risk.

IDENTIFYING WOMEN AT RISK OF AN INHERITED SUSCEPTIBILITY TO BREAST CANCER

Breast cancer risk can be affected by genetic and nongenetic factors. The risk is increased in women experiencing an earlier age at menarche, nulliparity, late age of first pregnancy, fewer births, late menopause, proliferative breast disease, menopausal hormone therapy, alcohol, obesity, inactivity, and radiation.15 A family history of breast cancer confers between a two- and four-fold increased risk varying according to several factors: the number and closeness of affected relatives, age at which cancers developed, whether breast cancers were bilateral, and if other cancers occurred (e.g., ovarian).16 For a woman without breast cancer, the probability of detecting a pathogenic variant can be estimated from a detailed multigenerational pedigree (e.g., Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm),17 screening tools (e.g., BRCAPRO,18 Ontario Family History Assessment Tool, Manchester Scoring System, Referral Screening Tool, Pedigree Assessment Tool, Family History Screen19, 20), or by referring to guidelines that define specific family history criteria (see section on Practice Guidelines and Position Statements below). For women with breast cancer, family history also affects the likelihood of carrying a pathogenic variant.17

PATIENT POPULATIONS

Genetic testing can be considered for women at increased risk of developing hereditary breast cancer based on their family history, or in women with breast cancer whose family history or cancer characteristics (e.g., triple-negative disease, young age) increase the likelihood that the breast cancer is hereditary. Testing may also be considered for women from families with known variants. Potential benefit derives from interventions (screening, chemoprevention, risk reducing surgery) that can prevent a first breast cancer, a contralateral breast cancer, or cancer in a different organ caused by the same variant. Whether benefit outweighs harms depends on the risk of developing breast cancer (a first cancer or a contralateral one), the effectiveness and the harms of interventions. Assessing the net health outcome requires:

1. that a test accurately identifies variants and pathogenicity can be determined;
2. that a variant alters (increasing or decreasing) a woman’s risk of developing breast cancer (including contralateral disease in women already diagnosed) sufficient to change decision making, and of a magnitude that
3. management changes informed by testing can lead to improved health outcomes.

REGULATORY STATUS

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement
Act (CLIA). PALB2, CHEK2, and ATM testing are available under the auspices of CLIA. Laboratories offering testing and voluntarily listing is available through the National Center for Biotechnology Genetic Testing Registry Laboratories that offer LDTs must be licensed by CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of these tests.

Myriad Genetic Laboratories (Salt Lake City, UT) offers: (1) Comprehensive BRACAnalysis® that includes complete sequencing of BRCA1 and BRCA2 and gap polymerase chain reaction for five common rearrangements (deletions/duplications) in BRCA1; (2) BRACAnalysis® Large Rearrangement Test (BART™), which may be ordered as a reflex test for patients who test negative for Comprehensive BRACAnalysis® to detect uncommon large rearrangements in BRCA1 and BRCA2; and (3) the Integrated BRACAnalysis® test, which includes BART as part of BRCA1 or BRCA2 analysis and 4) the BRACAnalysis CDx®, which is intended to detect germline BRCA1 and BRCA2 variants to aid in identifying ovarian cancer patients who may be considered for treatment with olaparib.

Per the GeneTests website (www.genetests.org) there are currently six CLIA-certified U.S. laboratories that offer sequence analysis of the entire gene coding; and four CLIA-certified U.S. laboratories offer deletion, duplication, and copy number analysis.

Quest Diagnostics (Madison, NJ) offers BRCAvantage™ that includes sequencing of BRCA1 and BRCA2 and a multiplex ligation-dependent probe amplification assay to detect both common and uncommon gene rearrangements.

LabCorp (Burlington, NC) offers the BRCAssureSM suite of tests which includes: targeted BRCA1 and BRCA2 analysis; a founder mutation panel for Ashkenazi Jewish patients (three variants); comprehensive BRCA1 and BRCA2 analysis (full gene sequencing plus analysis of common and uncommon large rearrangements); and deletion/duplication analysis of uncommon large rearrangements only (without sequencing) when comprehensive analysis is negative.

Customized next-generation sequencing panels provide simultaneous analysis of multiple cancer predisposition genes, and typically include both moderate and high-penetrant genes.

RELATED PROTOCOLS

Genetic Cancer Susceptibility Panels Using Next-Generation Sequencing

Genetic Testing for Li-Fraumeni Syndrome

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.
REFERENCES

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

1. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). BRCA1 and BRCA2 testing to determine the risk of breast and ovarian cancer. TEC Assessments. 1997;Volume 12:Tab 4.

