Expanded Molecular Panel Testing of Cancers to Identify Targeted Therapies

Medical Benefit

Effective Date: 06/01/19
Next Review Date: 03/20

Preauthorization

No
Review Dates: 07/15, 07/16, 07/17, 07/18, 03/19

This protocol considers this test or procedure investigational. If the physician feels this service is medically necessary, preauthorization is recommended.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals: • With cancer that is being considered for targeted therapy</td>
<td>Interventions of interest are: • Testing of tumor tissue with an expanded cancer molecular panel</td>
<td>Comparators of interest are: • Single gene molecular testing</td>
<td>Relevant outcomes include: • Overall survival • Disease-specific survival • Test validity</td>
</tr>
</tbody>
</table>

DESCRIPTION

Genetic panel testing offers the potential to evaluate a large number of genetic markers at a single time to identify cancer treatments that target specific biologic pathways. Some individual markers have established benefit in certain types of cancers; they are not addressed in this protocol. Rather, this protocol focuses on “expanded” panels, which are defined as molecular panels that test a wide variety of genetic markers in cancers without regard for whether specific targeted treatment has demonstrated benefit. This approach may result in a treatment different from that usually selected for a patient based on the type and stage of cancer.

SUMMARY OF EVIDENCE

For individuals who have a cancer that is being considered for targeted therapy who receive testing of tumor tissue with an expanded cancer molecular panel, the evidence includes a randomized controlled trial (RCT), non-randomized trials, and numerous case series. Relevant outcomes are overall survival, disease-specific survival, test validity, and quality of life. A large number of variants and many types of cancer preclude determination of the clinical validity of the panels as a whole. To demonstrate clinical utility, direct evidence from interventional trials, ideally RCTs, are needed that compare the strategy of targeted treatment based on panel results with standard care. The first such published RCT, molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer, (the SHIVA trial) reported that there was no difference in PFS when panels were used in this way. Some nonrandomized comparative studies, comparing matched treatment with nonmatched treatment, have reported that outcomes are superior for patients receiving matched treatment. However, these studies are inadequate to determine treatment efficacy, because the populations with matched and unmatched cancers may differ on several important clinical and prognostic variables. Also, there is potential for harm if ineffective therapy is given based on test results, because there may be adverse events of
therapy in the absence of a benefit. The evidence is insufficient to determine the effects of the technology on health outcomes.

POLICY

The use of expanded cancer molecular panels for selecting targeted cancer treatment is considered investigational.

POLICY GUIDELINES

GENETICS NOMENCLATURE UPDATE

The Human Genome Variation Society nomenclature is used to report information on variants found in DNA and serves as an international standard in DNA diagnostics. It is being implemented for genetic testing medical protocol updates starting in 2017 (see Table PG1). The Society’s nomenclature is recommended by the Human Variome Project, the HUman Genome Organization, and by the Human Genome Variation Society itself.

The American College of Medical Genetics and Genomics and the Association for Molecular Pathology standards and guidelines for interpretation of sequence variants represent expert opinion from both organizations, in addition to the College of American Pathologists. These recommendations primarily apply to genetic tests used in clinical laboratories, including genotyping, single genes, panels, exomes, and genomes. Table PG2 shows the recommended standard terminology—“pathogenic,” “likely pathogenic,” “uncertain significance,” “likely benign,” and “benign”—to describe variants identified that cause Mendelian disorders.

Table PG1. Nomenclature to Report on Variants Found in DNA

<table>
<thead>
<tr>
<th>Previous</th>
<th>Updated</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutation</td>
<td>Disease-associated variant</td>
<td>Disease-associated change in the DNA sequence</td>
</tr>
<tr>
<td>Variant</td>
<td>Change in the DNA sequence</td>
<td></td>
</tr>
<tr>
<td>Familial</td>
<td>Familial variant</td>
<td>Disease-associated variant identified in a proband for use in subsequent</td>
</tr>
<tr>
<td></td>
<td>First-degree relatives</td>
<td>targeted genetic testing in first-degree relatives</td>
</tr>
</tbody>
</table>

Table PG2. ACMG-AMP Standards and Guidelines for Variant Classification

<table>
<thead>
<tr>
<th>Variant Classification</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenic</td>
<td>Disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Likely pathogenic</td>
<td>Likely disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Variant of uncertain significance</td>
<td>Change in DNA sequence with uncertain effects on disease</td>
</tr>
<tr>
<td>Likely benign</td>
<td>Likely benign change in the DNA sequence</td>
</tr>
<tr>
<td>Benign</td>
<td>Benign change in the DNA sequence</td>
</tr>
</tbody>
</table>

ACMG: American College of Medical Genetics and Genomics; AMP: Association for Molecular Pathology.

MEDICARE ADVANTAGE

For Medicare Advantage Next Generation Sequencing (NGS) as a diagnostic laboratory test is medically necessary when performed in a Clinical Laboratory Improvement Amendments CLIA-certified laboratory, when ordered by a treating physician and when all of the following requirements are met:

1. Patient has:
 a. either recurrent, relapsed, refractory, metastatic, or advanced stages III or IV cancer; and
b. either not been previously tested using the same NGS test for the same primary diagnosis of cancer or repeat testing using the same NGS test only when a new primary cancer diagnosis is made by the treating physician; and

c. decided to seek further cancer treatment (e.g., therapeutic chemotherapy).

2. The diagnostic laboratory test using NGS must have results provided to the treating physician for management of the patient using a report template to specify treatment options.

BACKGROUND

TRADITIONAL THERAPEUTIC APPROACHES TO CANCER

Tumor location, grade, stage, and the patient’s underlying physical condition have traditionally been used in clinical oncology to determine the therapeutic approach to a specific cancer, which could include surgical resection, ionizing radiation, systemic chemotherapy, or combinations thereof. Currently, some 100 different types are broadly categorized according to the tissue, organ, or body compartment in which they arise. Most treatment approaches in clinical care were developed and evaluated in studies that recruited subjects and categorized results based on this traditional classification scheme.

This traditional approach to cancer treatment does not reflect the wide diversity of cancer at the molecular level. While treatment by organ type, stage, and grade may demonstrate statistically significant therapeutic efficacy overall, only a subgroup of patients may derive clinically significant benefit. It is unusual for a cancer treatment to be effective for all patients treated in a traditional clinical trial. Spear et al (2001) analyzed the efficacy of major drugs used to treat several important diseases.1 They reported heterogeneity of therapeutic responses, noting a low rate of 25% for cancer chemotherapeutics, with response rates for most drugs falling in the range of 50% to 75%. The low rate for cancer treatments is indicative of the need for better identification of characteristics associated with treatment response and better targeting of treatment to have higher rates of therapeutic responses.

TARGETED CANCER THERAPY

Much of the variability in clinical response may result from genetic variations. Within each broad type of cancer, there may be a large amount of variability in the genetic underpinnings of the cancer. Targeted cancer treatment refers to the identification of genetic abnormalities present in the cancer of a particular patient, and the use of drugs that target the specific genetic abnormality. The use of genetic markers allows cancers to be further classified by “pathways” defined at the molecular level. An expanding number of genetic markers have been identified. Dienstmann et al (2013) categorized these findings into three classes,2 which are listed following: (1) genetic markers that have a direct impact on care for the specific cancer of interest, (2) genetic markers that may be biologically important but are not currently actionable, and (3) genetic markers of uncertain importance.

A smaller number of individual genetic markers fall into the first category (i.e., have established utility for a particular cancer type). The utility of these markers has been demonstrated by RCTs that select patients with the marker and report significant improvements in outcomes with targeted therapy compared with standard therapy. Testing for individual variants with established utility is not covered in this protocol. In some cases, limited panels may be offered that are specific to one type of cancer (e.g., a panel of several markers for non-small-cell lung cancer). This protocol also does not address the use of cancer-specific panels that include a few variants. Rather, this protocol addresses expanded panels that test for many potential variants that do not have established efficacy for the specific cancer in question.

When advanced cancers are tested with expanded molecular panels, most patients are found to have at least one potentially pathogenic variant.3,4,5 The number of variants varies widely by types of cancers, different vari-
ants included in testing, and different testing methods among the available studies. In a study by Schwaederle et al (2015), 439 patients with diverse cancers were tested with a 236-gene panel. A total of 1813 molecular alterations were identified, and almost all patients (420/439 [96%]) had at least one molecular alteration. The median number of alterations per patient was three, and 85% (372/439) of patients had two or more alterations. The most common alterations were in the TP53 (44%), KRAS (16%), and PIK3CA (12%) genes.

Some evidence is available on the generalizability of targeted treatment based on a specific variant among cancers that originate from different organs. There are several examples of variant-directed treatment that is effective in one type of cancer but ineffective in another. For example, targeted therapy for epidermal growth factor receptor variants have been successful in non-small-cell lung cancer but not in trials of other cancer types. Treatment with tyrosine kinase inhibitors based on variant testing has been effective for renal cell carcinoma but has not demonstrated effectiveness for other cancer types tested. “Basket” studies, in which tumors of various histologic types that share a common genetic variant are treated with a targeted agent, also have been performed. One such study was published by Hyman et al (2015). In this study, 122 patients with BRAF V600 variants in nonmelanoma cancers were treated with vemurafenib. The authors reported that there appeared to be antitumor activity for some but not all cancers, with the most promising results seen for non-small-cell lung cancer, Erdheim-Chester disease, and Langerhans cell histiocytosis.

EXPANDED CANCER MOLECULAR PANELS

Table 1 provides a select list of commercially available expanded cancer molecular panels.

Table 1. Commercially Available Molecular Panels for Solid and Hematologic Tumor Testing

<table>
<thead>
<tr>
<th>Test</th>
<th>Manufacturer</th>
<th>Tumor Type</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoundationOne® test</td>
<td>Foundation Medicine</td>
<td>Solid</td>
<td>NGS</td>
</tr>
<tr>
<td>FoundationOne® Heme test</td>
<td>Foundation Medicine</td>
<td>Hematologic</td>
<td>RNA sequencing</td>
</tr>
<tr>
<td>OnkoMatch™</td>
<td>GenPath Diagnostics</td>
<td>Solid</td>
<td>Multiplex PCR</td>
</tr>
<tr>
<td>GeneTrails® Solid Tumor Panel</td>
<td>Knight Diagnostic Labs</td>
<td>Solid</td>
<td>NGS</td>
</tr>
<tr>
<td>Tumor profiling service</td>
<td>Caris Molecular Intelligence through Caris Life Sciences</td>
<td>Solid</td>
<td>Multiple technologies</td>
</tr>
<tr>
<td>SmartGenomics™</td>
<td>PathGroup</td>
<td>Solid and hematologic</td>
<td>NGS, cytogenomic array, other technologies</td>
</tr>
<tr>
<td>Guardant360 panel</td>
<td>GuardantHealth</td>
<td>Solid</td>
<td>Digital sequencing</td>
</tr>
<tr>
<td>Paradigm Cancer Diagnostic (PcDx™) Panel</td>
<td>Paradigm</td>
<td>Solid</td>
<td>NGS</td>
</tr>
<tr>
<td>Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets</td>
<td>MSK-IMPACT™; Memorial Sloan Kettering Cancer Center</td>
<td>Solid</td>
<td>NGS</td>
</tr>
<tr>
<td>TruSeq® Amplicon Panel</td>
<td>Illumina</td>
<td>Solid</td>
<td>NGS</td>
</tr>
<tr>
<td>Illumina TruSight™ Tumor</td>
<td>Illumina</td>
<td>Solid</td>
<td>NGS</td>
</tr>
<tr>
<td>Ion AmpliSeq™ Comprehensive Cancer Panel</td>
<td>Thermo Fisher Scientific</td>
<td>Solid</td>
<td>NGS</td>
</tr>
<tr>
<td>Ion AmpliSeq™ Cancer Hotspot Panel v2</td>
<td>Thermo Fisher Scientific</td>
<td>Solid</td>
<td>NGS</td>
</tr>
<tr>
<td>OmniSeq Comprehensive</td>
<td>OmniSeq</td>
<td>Solid</td>
<td>NGS</td>
</tr>
</tbody>
</table>

NGS: next-generation sequencing; PCR: polymerase chain reaction.

REGULATORY STATUS

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; labora-
Protocol: Expanded Molecular Panel Testing of Cancers to Identify Targeted Therapies

Last Review Date: 03/19

Tory-developed tests (LDTs) must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). Laboratories that offer LDTs must be licensed by the CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration has chosen not to require any regulatory review of this test.

RELATED PROTOCOL

Genetic Cancer Susceptibility Panels Using Next-Generation Sequencing

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

REFERENCES

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

