Decompression of the Intervertebral Disc Using Laser Energy (Laser Discectomy) or Radiofrequency Coblation (Nucleoplasty)

Medical Benefit
Effective Date: 11/01/07
Next Review Date: 09/23

Preauthorization
No

Review Dates: 02/07, 01/08, 01/09, 01/10, 09/10, 09/11, 09/12, 09/13, 09/14, 09/15, 09/16, 09/17, 09/18, 09/19, 09/20, 09/21, 09/22

This protocol considers this test or procedure investigational. If the physician feels this service is medically necessary, preauthorization is recommended.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient's contract at the time the services are rendered.

RELATED PROTOCOLS
- Automated Percutaneous and Percutaneous Endoscopic Discectomy
- Discectomy
- Percutaneous Intradiscal Electrothermal Annuloplasty, Radiofrequency Annuloplasty, and Biacuplasty

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With discogenic back pain or radiculopathy</td>
<td>• Laser discectomy</td>
<td>• Conservative management</td>
<td>• Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Epidural steroid injection</td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Discotomy</td>
<td>• Treatment-related morbidity</td>
</tr>
<tr>
<td>Individuals:</td>
<td>Interventions of interest are:</td>
<td>Comparators of interest are:</td>
<td>Relevant outcomes include:</td>
</tr>
<tr>
<td>• With discogenic back pain or radiculopathy</td>
<td>• Disc nucleoplasty with radiofrequency coblation</td>
<td>• Conservative management</td>
<td>• Symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Epidural steroid injection</td>
<td>• Functional outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Discotomy</td>
<td>• Treatment-related morbidity</td>
</tr>
</tbody>
</table>

DESCRIPTION
Laser energy (laser discectomy) and radiofrequency coblation (nucleoplasty) are being evaluated for decompression of the intervertebral disc. For laser discectomy under fluoroscopic guidance, a needle or catheter is inserted into the disc nucleus, and a laser beam is directed through it to vaporize tissue. For disc nucleoplasty, bipolar radiofrequency energy is directed into the disc to ablate tissue. These minimally invasive procedures are being evaluated for the treatment of discogenic back pain.

SUMMARY OF EVIDENCE
For individuals who have discogenic back pain or radiculopathy who receive laser discectomy, the evidence in-
includes systematic reviews of observational studies. Relevant outcomes are symptoms, functional outcomes, and treatment-related morbidity. While numerous case series and uncontrolled studies have reported improvements in pain levels and functioning following laser discectomy, the lack of well-designed and -conducted controlled trials limits interpretation of reported data. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have discogenic back pain or radiculopathy who receive disc nucleoplasty with radiofrequency coblation, the evidence includes randomized controlled trials (RCTs) and systematic reviews. Relevant outcomes are symptoms, functional outcomes, and treatment-related morbidity. For nucleoplasty, there are 3 RCTs in addition to several uncontrolled studies. These RCTs are limited by the lack of blinding, an inadequate control condition in 1, inadequate data reporting in the second, and low enrollment with early study termination in the third. The available evidence is insufficient to permit conclusions concerning the effect of these procedures on health outcomes due to multiple confounding factors that may bias results. High-quality randomized trials with adequate follow-up (at least 1 year), which control for selection bias, the placebo effect, and variability in the natural history of low back pain, are needed. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

POLICY

Laser discectomy and radiofrequency coblation (disc nucleoplasty) are considered investigational as techniques of disc decompression and treatment of associated pain.

BACKGROUND

DISCOGENIC LOW BACK PAIN

Discogenic low back pain is a common, multifactorial pain syndrome that involves low back pain without radicular symptom findings, in conjunction with radiologically confirmed degenerative disc disease.

Treatment

Typical treatment includes conservative therapy with physical therapy and medication management, with potential for surgical decompression in more severe cases.

A variety of minimally invasive techniques have been investigated as treatment of low back pain related to disc disease. Techniques can be broadly divided into those designed to remove or ablate disc material, and thus decompress the disc, and those designed to alter the biomechanics of the disc annulus. The former category includes chymopapain injection, automated percutaneous lumbar discectomy, laser discectomy, and, most recently, disc decompression using radiofrequency energy, referred to as a disc nucleoplasty.

Techniques that alter the biomechanics of the disc (disc annulus) include a variety of intradiscal electrothermal procedures discussed in the Percutaneous Intradiscal Electrothermal Annuloplasty, Radiofrequency Annuloplasty, and Biacuplasty Protocol.

A variety of different lasers have been investigated for laser discectomy, including YAG (yttrium aluminum garnet), KTP (potassium titanyl phosphate), holmium, argon, and carbon dioxide lasers. Due to differences in absorption, the energy requirements and the rates of application differ among the lasers. In addition, it is unknown how much disc material must be removed to achieve decompression. Therefore, protocols vary by the length of treatment, but typically the laser is activated for brief periods only.
Radiofrequency coblation uses bipolar low-frequency energy in an electrical conductive fluid (e.g., saline) to generate a high-density plasma field around the energy source. This creates a low-temperature field of ionizing particles that break organic bonds within the target tissue. Coblation technology is used in a variety of surgical procedures, particularly related to otolaryngology. The disc nucleoplasty procedure is accomplished with a probe mounted using a radiofrequency coblation source. The proposed advantage of coblation is that the procedure provides for controlled and highly localized ablation, resulting in minimal damage to surrounding tissue.

REGULATORY STATUS

A number of laser devices have been cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process for incision, excision, resection, ablation, vaporization, and coagulation of tissue. Intended uses described in FDA summaries include a wide variety of procedures, including percutaneous discectomy. Trimedyne received 510(k) clearance in 2002 for the Trimedyne® Holmium Laser System Holmium: Yttrium, Aluminum Garnet (Holmium:YAG), in 2007 RevoLix Duo™ Laser System, and in 2009 Quanta System LITHO Laser System. All were cleared, based on equivalence with predicate devices for percutaneous laser disc decompression/discectomy, including foraminalgia, percutaneous cervical disc decompression/discectomy, and percutaneous thoracic disc decompression/discectomy. The summary for the Trimedyne® system states that indications for cervical and thoracic decompression/discectomy include uncomplicated ruptured or herniated discs, sensory changes, imaging consistent with findings, and symptoms unresponsive to 12 weeks of conservative treatment. Indications for treatment of cervical discs also include positive nerve conduction studies. FDA product code: GEX.

In 2001, the Perc-D SpineWand™ (ArthroCare) was cleared for marketing by FDA through the 510(k) process. FDA determined that this device was substantially equivalent to predicate devices. It is used in conjunction with the ArthroCare Coblation® System 2000 for ablation, coagulation, and decompression of disc material to treat symptomatic patients with contained herniated discs. Smith & Nephew acquired ArthroCare in 2014; as of 2017, Smith & Nephew has not provided any information about coblation devices specific to spine surgeries on its website. FDA product code: GEI.

Services that are the subject of a clinical trial do not meet our Technology Assessment and Medically Necessary Services Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment and Medically Necessary Services Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

REFERENCES

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.