This protocol considers this test or procedure investigational. If the physician feels this service is medically necessary, preauthorization is recommended.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

RELATED PROTOCOL

Vestibular Function Testing

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals: • With suspected balance disorders</td>
<td>Interventions of interest are: • Dynamic posturography</td>
<td>Comparators of interest are: • Alternative approach to balance assessment or no balance assessment</td>
<td>Relevant outcomes include: • Test accuracy • Test validity • Symptoms • Morbid events</td>
</tr>
</tbody>
</table>

DESCRIPTION

Dynamic posturography tests a patient’s balance control in situations intended to isolate factors that affect balance in everyday experiences. Posturography provides quantitative information on the degree of imbalance present but is not intended to diagnosis specific types of balance disorders.

SUMMARY OF EVIDENCE

For individuals with suspected balance disorders who receive dynamic posturography, the evidence includes cross-sectional comparisons of results in patients with balance disorders and healthy controls and retrospective case series reporting outcomes for patients assessed with dynamic posturography as part of clinical care. Relevant outcomes are test accuracy and validity, symptoms, and morbid events. There are no generally accepted reference standards for dynamic posturography, which makes it difficult to determine how testing results can be applied to clinical care. There are no studies demonstrating the clinical utility of the test that would lead to changes in management that improve outcomes (e.g., symptoms, function). The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.
POLICY

Dynamic posturography is considered investigational.

BACKGROUND

BALANCE DISORDERS

Complaints of imbalance are common in older adults and contribute to the risk of falling in this population. Falls are an important cause of death and disability in this population in the United States. Maintenance of balance is a complex physiologic process, requiring the interaction of the vestibular, visual, and proprioceptive/somatosensory system, and central reflex mechanisms. Balance is also influenced by the general health of the patient (i.e., muscle tone, strength, range of motion). Therefore, identifying and treating the underlying balance disorder can be difficult. Commonly used balance function tests (e.g., electronystagmography, rotational chair tests) attempt to measure the extent and site of a vestibular lesion but do not assess the functional ability to maintain balance.

Role In Diagnosis

Dynamic posturography aims to provide quantitative information on a patient’s functional ability to maintain balance. The patient, wearing a harness to prevent falls, stands on an enclosed platform surrounded by a visual field. By altering the angle of the platform or shifting the visual field, the test assesses movement coordination and the sensory organization of visual, somatosensory, and vestibular information relevant to postural control. The patient undergoes 6 different testing situations designed to evaluate the vestibular, visual, and proprioceptive/somatosensory components of balance. In general terms, the test measures an individual’s balance (as measured by a force platform to calculate the movement of the patient’s center of mass) while visual and somatosensory cues are altered. These tests vary by whether eyes are open or closed, the platform is fixed or sway-referenced, and whether the visual surround is fixed or sway-referenced. Sway-referencing involves making instantaneous computer-aided alterations to the platform or visual surround to coincide with changes in body position produced by sway. The purpose of sway-referencing is to cancel out accurate feedback from somatosensory or visual systems that are normally involved in maintaining balance. In the first 3 components of the test, the support surface is stable, and visual cues are either present, absent, or sway-referenced. In tests 4 to 6, the support surface is sway-referenced to the individual, and visual cues are either present, absent, or sway-referenced. In tests 5 and 6, the only accurate sensory cues available for balance are vestibular cues. Results of computerized dynamic posturography have been used to determine what type of information (i.e., visual, vestibular, proprioceptive) can and cannot be used to maintain balance. Dynamic posturography cannot be used to localize the site of a lesion.

Posturography tests a patient’s balance control in situations intended to isolate factors that affect balance in everyday experiences. Balance can be rapidly assessed qualitatively by asking the patient to maintain a steady stance on a flat or compressible surface (i.e., foam pads) with the eyes open or closed. By closing the eyes, the visual input into balance is eliminated. Use of foam pads eliminates the sensory and proprioceptive cues. Therefore, the only vestibular input is available when standing on a foam pad with eyes closed.

REGULATORY STATUS

In 1985, the NeuroCom EquiTest® (NeuroCom International, Portland, OR; now Clackamas, OR), a dynamic posturography device, was cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process. Other dynamic posturography device makers include Vestibular Technologies (Cheyenne, WY) and Medicapteurs (Balma, France). Companies that previously manufactured dynamic posturography devices include Metitur (Jyvaskyla, Finland) and Micromedical Technology (Chatham, IL). FDA product code: LXV.
Services that are the subject of a clinical trial do not meet our Technology Assessment and Medically Necessary Services Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment and Medically Necessary Services Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

REFERENCES

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.