Ambulatory Event Monitors and Mobile Cardiac Outpatient Telemetry

(20208)

Medical Benefit

Effective Date: 08/01/19

Next Review Date: 05/20

Preauthorization

No

Review Dates: 05/07, 07/08, 09/09, 09/10, 01/11, 01/12, 01/13, 01/14, 09/14, 05/15, 05/16, 05/17, 05/18, 05/19

This protocol considers mobile cardiac outpatient telemetry investigational. If the physician feels this service is medically necessary, preauthorization is recommended.

The following protocol contains medical necessity criteria that apply for this service. The criteria are also applicable to services provided in the local Medicare Advantage operating area for those members, unless separate Medicare Advantage criteria are indicated. If the criteria are not met, reimbursement will be denied and the patient cannot be billed. Please note that payment for covered services is subject to eligibility and the limitations noted in the patient’s contract at the time the services are rendered.

<table>
<thead>
<tr>
<th>Populations</th>
<th>Interventions</th>
<th>Comparators</th>
<th>Outcomes</th>
</tr>
</thead>
</table>
| Individuals:
• With signs and/or symptoms suggestive of arrhythmia | Interventions of interest are:
• Patient- or autoactivated external ambulatory event monitoring
• Continuous ambulatory monitoring storing information for more than 48 hours | Comparators of interest are:
• Electrocardiogram only or 24- to 48-hour Holter monitoring | Relevant outcomes include:
• Overall survival
• Morbid events |
| Individuals:
• With atrial fibrillation following ablation | Interventions of interest are:
• Long-term ambulatory cardiac monitoring | Comparators of interest are:
• Electrocardiogram only or 24- to 48-hour Holter monitoring | Relevant outcomes include:
• Overall survival
• Morbid events
• Medication use
• Treatment-related morbidity |
| Individuals:
• With cryptogenic stroke with negative standard workup for atrial fibrillation | Interventions of interest are:
• Long-term ambulatory cardiac monitoring | Comparators of interest are:
• Standard evaluation for stroke, including electrocardiogram and 24-hour Holter monitoring | Relevant outcomes include:
• Overall survival
• Morbid events
• Medication use
• Treatment-related morbidity |
| Individuals:
• Who are asymptomatic with risk factors for atrial fibrillation | Interventions of interest are:
• Long-term ambulatory cardiac monitoring | Comparators of interest are:
• No additional evaluation or standard care | Relevant outcomes include:
• Overall survival
• Morbid events
• Medication use
• Treatment-related morbidity |
| Individuals:
• With signs and/or symptoms suggestive of arrhythmia with infrequent symptoms | Interventions of interest are:
• Patient- or autoactivated implantable ambulatory event monitoring | Comparators of interest are:
• No additional evaluation or standard care
• Patient- or autoactivated external ambulatory event monitoring | Relevant outcomes include:
• Overall survival
• Morbid events
• Medication use
• Treatment-related morbidity |
Populations

- **Individuals:** With signs and/or symptoms suggestive of arrhythmia

Interventions

- **Interventions of interest are:** Outpatient cardiac telemetry

Comparators

- **Comparators of interest are:** Patient- or autoactivated external ambulatory event monitoring

Outcomes

- **Relevant outcomes include:**
 - Overall survival
 - Morbid events

DESCRIPTION

Various devices are available for outpatient cardiac rhythm monitoring. These devices differ in the types of monitoring leads used, the duration and continuity of monitoring, the ability to detect arrhythmias without patient intervention, and the mechanism of delivering the information from patient to clinician. These devices may be used to evaluate symptoms suggestive of arrhythmias (e.g., syncope, palpitations), and may be used to detect atrial fibrillation (AF) in patients who have undergone cardiac ablation of AF or who have a history of cryptogenic stroke.

SUMMARY OF EVIDENCE

AMBULATORY EVENT MONITORING

For individuals who have signs and/or symptoms suggestive of arrhythmia(s) who receive patient- or autoactivated external ambulatory event monitoring or continuous ambulatory monitoring storing information for more than 48 hours, the evidence includes prospective and retrospective studies reporting on the diagnostic yield. Relevant outcomes are overall survival and morbid events. Studies have shown that continuous monitoring with longer recording periods clearly detects more arrhythmias than 24- or 48-hour Holter monitoring. Particularly for patients who, without the more prolonged monitoring, would only undergo shorter term monitoring, the diagnostic yield is likely to identify arrhythmias that may have therapeutic implications. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have AF following ablation who receive long-term ambulatory cardiac monitoring, the evidence includes a randomized controlled trial (RCT) comparing ambulatory event monitoring with standard care and several observational studies. Relevant outcomes are overall survival, morbid events, medication use, and treatment-related morbidity. The RCT evaluating a long-term monitoring strategy after catheter ablation for AF reported significantly higher rates of AF detection. The available evidence has suggested that long-term monitoring for AF postablation is associated with improved outcomes. However, the specific type of monitoring associated with the best outcomes is not established, because different long-term monitoring devices were used across the studies. Trials demonstrating improved outcomes have used event monitors or implantable monitors. In addition, there are individual patient considerations that may make one type of monitor preferable over another. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have cryptogenic stroke with a negative standard workup for AF who receive long-term ambulatory cardiac monitoring, the evidence includes systematic reviews of RCTs comparing ambulatory event monitoring with standard care. Relevant outcomes are overall survival, morbid events, medication use, and treatment-related morbidity. RCTs evaluating a long-term AF monitoring strategy poststroke have reported significantly higher rates of AF detection with longer term ambulatory monitoring. The available evidence has suggested that long-term monitoring for AF after cryptogenic stroke is associated with improved outcomes, but the specific type of monitoring associated with the best outcomes is not established, because different long-term monitoring devices were used across the studies. Trials demonstrating improved outcomes have used event monitors or implantable monitors. In addition, there are individual patient considerations that may make one
type of monitor preferable over another. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic with risk factors for AF who receive long-term ambulatory cardiac monitoring, the evidence includes an RCT and two nonrandomized studies. Relevant outcomes are overall survival, morbid events, medication use, and treatment-related morbidity. The studies showed use of the ambulatory monitors would result in higher AF detection compared with routine care. However, the RCT followed patients for one year and did not detect a difference in stroke occurrence between the monitored group and the standard of care group. The other studies did not discuss changes in patient management or health outcomes based on monitoring. Studies reporting on improved outcomes with longer follow-up are needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

IMPLANTABLE LOOP RECORDING

For individuals who have signs and/or symptoms suggestive of arrhythmia with infrequent symptoms who receive patient- or autoactivated implantable ambulatory event monitoring, the evidence includes RCTs comparing implantable loop recorders with shorter term monitoring, usually 24- to 48-hour Holter monitoring. Relevant outcomes are overall survival, morbid events, medication use, and treatment-related morbidity. Studies assessing prolonged implantable loop recorders in patients have reported high rates of arrhythmia detection compared with shorter external event or Holter monitoring. These studies have supported use of a progression in diagnostics from an external event monitor to implantable loop recorder when longer monitoring is needed. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

OUTPATIENT CARDIAC TELEMETRY

For individuals who have signs and/or symptoms suggestive of arrhythmia who receive outpatient cardiac telemetry, the evidence includes an RCT and nonrandomized studies evaluating rates of arrhythmia detection using outpatient cardiac telemetry. Relevant outcomes are overall survival and morbid events. The available evidence has suggested that outpatient cardiac telemetry is at least as good at detecting arrhythmias as ambulatory event monitoring. However, studies have not evaluated whether the real-time monitoring feature of outpatient cardiac telemetry leads to reduced cardiac events and mortality. The evidence is insufficient to determine the effects of the technology on health outcomes.

POLICY

The use of patient activated or autoactivated external ambulatory event monitors (AEMs) OR continuous ambulatory monitors that record and store information for periods longer than 48 hours may be considered medically necessary as a diagnostic alternative to Holter monitoring in the following situations:

- Patients who experience infrequent symptoms (less frequently than every 48 hours) suggestive of cardiac arrhythmias (i.e., palpitations, dizziness, presyncope, or syncope).
- Patients with atrial fibrillation who have been treated with catheter ablation, and in whom discontinuation of systemic anticoagulation is being considered.
- Patients with cryptogenic stroke who have a negative standard work-up for atrial fibrillation including a 24-hour Holter monitor (see Policy Guidelines).

The use of implantable AEMs, either patient activated or autoactivated, may be considered medically necessary in the following situations:
• In the small subset of patients who experience recurrent symptoms so infrequently that a prior trial of other external AEMs has been unsuccessful.
• In patients who require long-term monitoring for atrial fibrillation or possible atrial fibrillation (see Policy Guidelines).

The use of outpatient cardiac telemetry (also known as mobile cardiac outpatient telemetry) as a diagnostic alternative to AEMs in patients who experience infrequent symptoms (less frequently than every 48 hours) suggestive of cardiac arrhythmias (i.e., palpitations, dizziness, presyncope, or syncope) is considered investigational.

Other uses of AEMs, including outpatient cardiac telemetry and mobile applications, are considered investigational, including but not limited to the monitoring of asymptomatic patients with risk factors for arrhythmia, monitoring the effectiveness of antiarrhythmic medications and detection of myocardial ischemia by detecting ST segment changes.

POLICY GUIDELINES

The available evidence suggests that long-term monitoring for AF after cryptogenic stroke or postablation is associated with improved outcomes, but the specific type of monitoring associated with the best outcomes is not well-defined. Trials demonstrating improved outcomes have used either event monitors or implantable monitors. In addition, there are individual patient considerations that may make one type of monitor preferable over another.

Therefore, for the evaluation of patients with cryptogenic stroke who have had a negative standard work-up for AF including 24-hour Holter monitoring, or for the evaluation of AF after an ablation procedure, the use of long-term monitoring with an external event monitor, OR a continuous ambulatory monitor that records and stores information for periods longer than 48 hours, OR an implantable ambulatory monitor may be considered medically necessary for patients who meet the criteria outlined above.

MEDICARE ADVANTAGE

Except for this additional medically necessary statement, the above policy statements and guidelines apply for Medicare Advantage.

Telephonic EKG transmissions are considered medically necessary as a diagnostic service for the indications below:
1. Detect, characterize, and document symptomatic transient arrhythmias;
2. Initiate, revise, or discontinue arrhythmic drug therapy; or,
3. Carry-out early post-hospital monitoring of patients discharged after myocardial infarction (MI); (only if 24-hour coverage is provided).

MEDICARE ADVANTAGE POLICY GUIDELINES

24-hour attended coverage used as early post-hospital monitoring of patients discharged after MI is only covered if provision is made for such 24-hour attended coverage in the manner described below:

24-hour attended coverage means there must be, at a monitoring site or central data center, an EKG technician or other non-physician, receiving calls and/or EKG data; tape recording devices do not meet this requirement. Further, such technicians should have immediate, 24-hour access to a physician to
review transmitted data and make clinical decisions regarding the patient. The technician should also be instructed as to when and how to contact available facilities to assist the patient in case of emergencies.

BACKGROUND

CARDIAC ARRHYTHMIAS

Cardiac monitoring is routinely used in the inpatient setting to detect acute changes in heart rate or rhythm that may need urgent response. For some conditions, a more prolonged period of monitoring in the ambulatory setting is needed to detect heart rate or rhythm abnormalities that may occur infrequently. These cases may include the diagnosis of arrhythmias in patients with signs and symptoms suggestive of arrhythmias as well as the evaluation of paroxysmal AF.

Cardiac arrhythmias may be suspected because of symptoms suggestive of arrhythmias, including palpitations, dizziness, or syncope or presyncope, or because of abnormal heart rate or rhythm noted on exam. A full discussion of the differential diagnosis and evaluation of each of these symptoms is beyond the scope of this review, but some general principles on the use of ambulatory monitoring are discussed.

Arrhythmias are an important potential cause of syncope or near syncope, which in some cases may be described as dizziness. An electrocardiogram (ECG) is generally indicated whenever there is suspicion of a cardiac cause of syncope. Some arrhythmic causes will be apparent on ECG. However, for patients in whom an ECG is not diagnostic, longer monitoring may be indicated. The 2009 joint guidelines from the European Society of Cardiology and three other medical specialty societies suggested that, in individuals with clinical or ECG features suggesting an arrhythmic syncope, ECG monitoring is indicated; the guidelines also stated that the “duration (and technology) of monitoring should be selected according to the risk and the predicted recurrence rate of syncope.” Similarly, guidelines from the National Institute for Health and Care Excellence (2014) on the evaluation of transient loss of consciousness, have recommended the use of an ambulatory ECG in individuals with a suspected arrhythmic cause of syncope. The type and duration of monitoring recommended is based on the individual’s history, particularly the frequency of transient loss of consciousness. The Holter monitor is recommended if transient loss of consciousness occurs several times a week. If the frequency of transient loss of consciousness is every one to two weeks, an external event recorder is recommended; and if the frequency is less than once every two weeks, an implantable event recorder is recommended.

Similar to syncope, the evaluation and management of palpitations is patient-specific. In cases where the initial history, examination, and ECG findings are suggestive of an arrhythmia, some form of ambulatory ECG monitoring is indicated. A position paper from the European Heart Rhythm Association (2011) indicated that, for individuals with palpitations of unknown origin who have clinical features suggestive of arrhythmia, referral for specialized evaluation with consideration for ambulatory ECG monitoring is indicated.

AF DETECTION

AF is the most common arrhythmia in adults. It may be asymptomatic or be associated with a broad range of symptoms, including lightheadedness, palpitations, dyspnea, and a variety of more nonspecific symptoms (e.g., fatigue, malaise). It is classified as paroxysmal, persistent, or permanent based on symptom duration. Diagnosed AF may be treated with antiarrhythmic medications with the goal of rate or rhythm control. Other treatments include direct cardioversion, catheter-based radiofrequency- or cryo-energy-based ablation, or one of several surgical techniques, depending on the patient’s comorbidities and associated symptoms.

AF is associated with the development of thrombi in the atria, often the left atrial appendage. Patients with AF are at risk for ischemic stroke due to the risk of embolism of the thrombus. Multiple clinical trials have demonstrated that anticoagulation reduces the ischemic stroke risk in patients at moderate or high risk of thromboembolism.
bolistic events. Oral anticoagulation in patients with AF reduces the risk of subsequent stroke and was recom-
mended by American Heart Association, American College of Cardiology, and Heart Rhythm Society in 2014 joint
guidelines on patients with a history of stroke or transient ischemic attack.4

Ambulatory ECG monitoring may play a role in several situations in the detection of AF. In patients who have
undergone ablative treatment for AF, if ongoing AF can be excluded with reasonable certainty, including parox-
ysmal AF which may not be apparent on ECG during an office visit, anticoagulation therapy could potentially be
stopped. In some cases where identifying paroxysmal AF is associated with potential changes in management,
longer term monitoring may be considered. There are well-defined management changes that occur in patients
with AF. However, until relatively recently the specific role of long-term (i.e., more than 48 hours) monitoring in
AF was not well-described.

Patients with cryptogenic stroke are often monitored for the presence of AF because AF is estimated to be the
cause of cryptogenic stroke in more than 10% of patients, and AF increases the risk of stroke.5,6 Paroxysmal AF
confers an elevated risk of stroke, just as persistent and permanent AF do. In individuals with a high risk of
stroke, particularly those with a history of ischemic stroke that is unexplained by other causes, prolonged moni-
toring to identify paroxysmal AF has been investigated.

CARDIAC RHYTHM AMBULATORY MONITORING DEVICES

Ambulatory cardiac monitoring with a variety of devices permits the evaluation of cardiac electrical activity over
time, in contrast to a static ECG, which only permits the detection of abnormalities in cardiac electrical activity at
a single point in time.

A Holter monitor is worn continuously and records cardiac electrical output continuously throughout the record-
ing period. Holter monitors are capable of recording activity for 24 to 72 hours. Traditionally, most Holter moni-
tors had three channels based on three ECG leads. However, some currently available Holter monitors have up
to 12 channels. Holter monitors are an accepted intervention in a variety of settings where a short period (24-48
hours) of comprehensive cardiac rhythm assessment is needed (e.g., suspected arrhythmias when symptoms
[syncope, palpitations] are occurring daily). These devices are not the focus of this review.

Various classes of devices are available for situations where longer monitoring than can be obtained with a tra-
ditional Holter monitor is needed. Because there may be many devices within each category, a comprehensive
description of each is beyond our scope. Specific devices may vary in how data are transmitted to the location
where the ECG output is interpreted. Data may be transmitted via cellular phone or landline, or by direct down-
load from the device after its return to the monitoring center. The device classes are described in Table 1.

Table 1. Ambulatory Cardiac Rhythm Monitoring Devices

<table>
<thead>
<tr>
<th>Device Class</th>
<th>Description</th>
<th>Device Examples</th>
</tr>
</thead>
</table>
| Noncontinuous devices with memory (event recorder)| Devices not worn continuously but rather activated by patient and applied to skin in the precordial area when symptoms develop | • Zio® Event Card (iRhythm Technologies)
• REKA E100™ (REKA Health) |
| Continuous recording devices with longer recording periods | Devices continuously worn and continuously record via one or more cardiac leads and store data for a longer period than traditional Holter (14 days) | • Zio® Patch system (iRhythm Technologies) |
| External memory loop devices (patient- or autotriggered) | Devices continuously worn and store a single channel of ECG data in a refreshed memory. If device is activated, the ECG is then recorded from the memory loop for the preceding 30-90 seconds and for 60 seconds or so. Devices may be activated by a patient when symptoms occur (patient-triggered) or by an automated algorithm | • Patient-triggered: Explorer™ Looping Monitor (LifeWatch Services)
• Autotriggered: LifeStar AF Express™ Auto-Detect Looping Monitor (LifeWatch Services)
• Autotriggered or patient-triggered: King of Hearts Express® AF (Card Guard) |
Implantable memory loop devices (patient- or autotriggered)

Devices similar in design to external memory loop devices but implanted under the skin in the precordial region

- Autotriggered: Reveal® XT ICM (Medtronic) and Confirm Rx Insertable™ Cardiac Monitor (Abbott)
- Autotriggered: BioMonitor (Biotronik)

Mobile cardiac outpatient telemetry

Continuously recording or autotriggered memory loop devices that transmit data to a central recording station with real-time monitoring and analysis

- CardioNet MCOT (BioTelemetry)
- LifeStar Mobile Cardiac Telemetry (LifeWatch Services)
- SEEQ Mobile Cardiac Telemetry (Medtronic)

ECG: electrocardiogram.

There are also devices that combine features of multiple classes. For example, the LifeStar ACT Ex Holter (LifeWatch Services) is a three-channel Holter monitor, but is converted to a mobile cardiac telemetry system if a diagnosis is inconclusive after 24 to 48 hours of monitoring. The BodyGuardian® Heart Remote Monitoring System (Preventice Services) is an external autotriggered memory loop device that can be converted to a real-time monitoring system. The eCardio Verité™ system (eCardio) can switch between a patient-activated event monitor and a continuous telemetry monitor. The Spiderflash-T (LivaNova) is an example of an external autotriggered or patient-triggered loop recorder, but, like the Zio® Patch, can record two channels for 14 to 40 days.

REGULATORY STATUS

Some of the newer devices are described in the Background section for informational purposes. Because there may be many devices within each category, a comprehensive description of individual devices is beyond the scope of this protocol. U.S. Food and Drug Administration product codes include: DSH, DXH, DQK, DSI, MXD, MHX.

Services that are the subject of a clinical trial do not meet our Technology Assessment Protocol criteria and are considered investigational. For explanation of experimental and investigational, please refer to the Technology Assessment Protocol.

It is expected that only appropriate and medically necessary services will be rendered. We reserve the right to conduct prepayment and postpayment reviews to assess the medical appropriateness of the above-referenced procedures. Some of this protocol may not pertain to the patients you provide care to, as it may relate to products that are not available in your geographic area.

REFERENCES

We are not responsible for the continuing viability of web site addresses that may be listed in any references below.

70. Joshi AK, Kowey PR, Prystowsky EN, et al. First experience with a Mobile Cardiac Outpatient Telemetry (MCOT) system for the diagnosis and management of cardiac arrhythmia. Am J Cardiol. Apr 1 2005;95(7):878-881. PMID 15781022

